Multigene phylogeny and taxonomic revision of *Atheliales s.l.*: reinstatement of three families and one new family, *Lobuliciaceae fam. nov*

Bobby P. Sulistyo, Karl-Henrik Larsson, Danny Haelewaters, Martin Ryberg

PII: S1878-6146(20)30177-X

DOI: https://doi.org/10.1016/j.funbio.2020.11.007

Reference: FUNBIO 1198

To appear in: Fungal Biology

Received Date: 22 May 2020

Revised Date: 21 October 2020 Accepted Date: 22 November 2020

Please cite this article as: Sulistyo, B.P., Larsson, K.-H., Haelewaters, D., Ryberg, M., Multigene phylogeny and taxonomic revision of *Atheliales s.l.*: reinstatement of three families and one new family, *Lobuliciaceae fam. nov, Fungal Biology*, https://doi.org/10.1016/j.funbio.2020.11.007.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd on behalf of British Mycological Society.

- 1 Multigene phylogeny and taxonomic revision of
- 2 Atheliales s.l.: reinstatement of three families and one
- 3 new family, Lobuliciaceae fam. nov.

5 Authors

4

7

16

6 Bobby P. Sulistyo (1), Karl-Henrik Larsson (2,3), Danny Haelewaters (4,5), Martin Ryberg (1)

8 Author affiliations

- 9 (1) Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36
- 10 Uppsala, Sweden
- 11 (2) Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, NO-0318 Oslo,
- 12 Norway
- 13 (3) Gothenburg Global Diversity Centre, P.O. Box 461, 405 30, Göteborg, Sweden
- 14 (4) Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- 15 (5) Department of Botany and Plant Pathology, Purdue University, West Lafayette, USA

17 E-mail addresses

- 18 <u>bobbysulistyo@outlook.com</u> (B.P. Sulistyo), <u>k.h.larsson@nhm.uio.no</u> (K.-H. Larsson),
- 19 <u>danny.haelewaters@gmail.com</u> (D. Haelewaters), <u>martin.ryberg@ebc.uu.se</u> (M. Ryberg).

20

21

Corresponding author: Martin Ryberg

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Abstract

Atheliales (Agaricomycetes, Basidiomycota) is an order mostly composed of corticioid fungi, containing roughly 100 described species in approximately 20 genera. Members exhibit remarkable ecological diversity, including saprotrophs, ectomycorrhizal symbionts, facultative parasites of plants or lichens, and symbionts of termites. Ectomycorrhizal members are well known because they often form a major part of boreal and temperate fungal communities. However, Atheliales is generally understudied, and molecular data are scarce. Furthermore, the order is riddled with many taxonomic problems: some genera are non-monophyletic, and several species have been shown to be more closely related to other orders. We investigated the phylogenetic position of genera that are currently listed in Atheliales sensu lato by employing an Agaricomycetes-wide dataset with emphasis on Atheliales including the type species of genera therein. A phylogenetic analysis based on LSU, 5.8S, rpb2, and tef1 (excluding third codon) returnedretrieved Atheliales in subclass Agaricomycetidae, as sister to Lepidostromatales. In addition, a number of Atheliales genera were retrieved in other orders with strong support: Byssoporia in Russulales, Digitatispora in Agaricales, Hypochnella in Polyporales, Lyoathelia in Hymenochaetales, and Pteridomyces in Trechisporales. Based on this result, we assembled another dataset focusing on the clade with Atheliales sensu stricto and representatives from Lepidostromatales and Boletales as outgroups, based on LSU, ITS (ITS1-5.8S-ITS2), rpb2, and tef1. The reconstructed phylogeny of Atheliales returned five distinct lineages, which we propose

42	here as families. Lobulicium, a monotypic genus with a distinct morphology of seven-lobed
43	basidiospores, was placed as sister to the rest of Atheliales. A new family is proposed to
44	accommodate this genus, Lobuliciaceae fam. nov. The remaining four lineages can be named
45	following the family-level classification by Jülich (1982), and thus we opted to use the names
46	Atheliaceae, Byssocorticiaceae, Pilodermataceae, and Tylosporaceae, albeit with amended
47	circumscriptions.
48	
49	Keywords
50	Agaricomycetes, Basidiomycota, corticioid fungi, multi-locus phylogeny, family-level taxonomy
51	
52	Supplementary Materials
53	
54	
55	INTRODUCTION
56	Atheliales Jülich (1982) is a fungal order in the subclass Agaricomycetidae, class
57	Agaricomycetes, phylum Basidiomycota (Hibbett et al., 2007; Wijayawardene et al., 2020).
58	Unlike most other orders within the extremely diverse Agaricomycetes, members of Atheliales
59	are generally inconspicuous with relatively simple gross morphology, possessing few diagnostic
60	features. Members of the order are generally corticioid and athelioid, producing effused, crust-
61	like fruiting bodies that are loosely attached to the substrate and with non-differentiated margins
62	(Eriksson et al., 1984, 1981, 1978). Atheliales species prefer moist habitats on the forest floor,

and they are mostly documented in temperate regions (Dai, 2011; Ezhov et al., 2017; Ginns,

63

64 1998; Gorjón and Bernicchia, 2013; Gorjón and Hallenberg, 2013; Ordynets et al., 2017; Rosenthal et al., 2017). The order encompasses approximately 100 species in 20 genera (He et 65 al., 2019; Index Fungorum, 2020; Wijayawardene et al., 2020), mostly composed of described 66 species from Europe. However, new taxa are being added not only from Europe (Duhem, 2013; 67 Kotiranta et al., 2011), but also from Argentina (Gorjon et al., 2012), Chile (Gorjón and 68 Hallenberg, 2013), Bhutan (Dhingra and Singh, 2018), and India (Singh et al., 2010; Prasher, 69 70 2015). Despite their simple gross morphology, members of Atheliales exhibit a remarkable diversity of 71 ecological strategies, which include: ectomycorrhizal (Amphinema, Byssocorticium, Piloderma 72 and Tylospora; Tedersoo et al., 2010), white rot saprotrophic (Athelia, Athelopsis, Fibulomyces, 73 Leptosporomyces; Tedersoo et al., 2014), lichenicolous (Athelia arachnoidea; Yurchenko and 74 75 Olubkov, 2003), and putatively parasitic on termites involving mimicry of termite eggs (Athelia 76 termitophila; Maekawa et al., 2020; Matsuura et al., 2000; Yashiro et al., 2011). Sequences obtained from the roots of achlorophyllous orchids Lecanorchis spp. and Erythrorchis altissima 77 78 also suggest that members of Atheliales are associated with mycoheterothrophy (Ogura-Tsujita et 79 al., 2018; Okayama et al., 2012). Some members are economically important because they cause spoilage of vegetables and fruits in cold storage (Adams and Kropp, 1996; de Vries et al., 2008; 80 Wenneker et al., 2017). Ectomycorrhizal members of Atheliales form a major part of many 81 ectomycorrhizal communities (Peter et al., 2008; Rosenthal et al., 2017), and are potentially 82 diverse in the tropics (Tedersoo and Smith, 2013). Despite their importance in ecological studies 83 and recent additions of new taxa, such as Fibulomyces cystoideus (Dhingra and Singh, 2018) and 84 Athelia termitophila (Maekawa et al., 2020), no molecular phylogenetic study has focused on 85 Atheliales thus far. 86

87 Most of the core Atheliales genera were initially grouped within Corticiaceae sensu lato (Donk, 1964). Parmasto (1968) then described the subfamily "Athelioideae" with three subsequent 88 groups: "Atheliae", "Amylocorticieae", and "Byssomerulieae". Jülich (1972) published a 89 monograph of "Atheliae" that contained core Atheliales genera such as Athelia, Byssocorticium, 90 91 Fibulomyces, Leptosporomyces, Piloderma, and Tylospora. Subsequently, in his classification of basidiomycetes, Jülich (1982) introduced a family-level classification of the order Atheliales 92 93 with four families: Atheliaceae, Byssocorticiaceae, Pilodermataceae, and Tylosporaceae. With 94 the advent of molecular phylogenetics, Atheliales started to be included in large-scale studies (Boidin et al., 1998). In phylogenetic studies focusing on corticioid fungi, Larsson et al. (2004) 95 96 and Binder et al. (2005) recovered Atheliales as a monophyletic group, which was later recognized as an order in the latest comprehensive classification of corticioid fungi (Larsson, 97 2007) and of the fungal kingdom (Hibbett et al., 2007), placed within the subclass 98 99 Agaricomycetidae. With the limited sampling of Atheliales in these studies, Jülich's (1982) subdivision into four families could not be tested and therefore only one family is currently 100 101 recognized: Atheliaceae (He et al., 2019; Wijayawardene et al., 2020). 102 The relationship between Atheliales and Amylocorticiales, another order in Agaricomycetidae 103 dominated by corticioid species, is still unclear. Based on phylogenomic studies (Li et al., 2020; Nagy et al., 2015), Atheliales is closely related with Amylocorticiales (Figure 1A). However, 104 105 large-scale multigene phylogenies inferred from nuclear ribosomal SSU and LSU, 5.8S, rpb1, rpb2, and tef1 (Chen et al., 2019; Zhao et al., 2017) showed that Amylocorticiales is most closely 106 related to Agaricales, while Atheliales is closely related to Lepidostromatales (Figure 1B), for 107 which no genomes are currently available. Varga et al. (2019) constructed a phylogeny of 108 109 Agaricomycetes based on LSU, rpb2, and tef1 with a phylogenomic backbone constraint on the

110	deep nodes, and Atheliales forms a clade with Amylocorticiales and Lepidostromatales with
111	unresolved relationships (Figure 1C).
112	Over the years, a number of genera have been described and added to Atheliales, based on
113	morphological characters alone (Hjortstam and Ryvarden, 2010, 2004) or combined with
114	molecular phylogenetic evidence (Kotiranta et al., 2011). Sequence-based studies found some of
115	these genera to be polyphyletic, sometimes with members clustering within other orders (Binder
116	et al., 2010; Ertz et al., 2008; Hibbett et al., 2007). Genera of Atheliales sensu lato are
117	summarized in Table 1, as well as significant sources indicating their presumed affiliations.
118	Well-annotated molecular data in public databases are scarce for Atheliales, and a phylogeny of
119	the order is lacking.
120	In this study, we present the first comprehensive phylogenetic treatment of the order Atheliales
121	with two specific aims. First, we aimed to delimit Atheliales by sampling the type species of the
122	genera listed in Atheliales sensu lato (Table 1) as well as representatives of various orders within
123	Agaricomycetes. Due to the taxonomic breadth of this analysis, we used molecular data from
124	5.8S and LSU of the nuclear ribosomal DNA as well as the protein coding regions of rpb2 and
125	tef1 excluding the third codon position to reconstruct the phylogeny of Agaricomycetes. Second,
126	we aimed to delineate phylogenetic lineages within the order. For this aim, we assembled a
127	dataset composed of taxa belonging to Atheliales sensu stricto. This dataset was based on the
128	nuclear ribosomal ITS1, 5.8S, ITS2, and LSU, as well as rpb2 and tef1 including the third codon
129	position.

130

131

MATERIALS AND METHODS

Taxon sampling, fungal isolates, and DNA extraction

132

We targeted taxa in Atheliales sensu lato as summarized in Table 1, with emphasis on the type 133 species of each genus. Specimens were retrieved from the herbarium of Uppsala University 134 Museum of Evolution (UPS), the herbarium of University of Gothenburg (GB), and the Farlow 135 136 Herbarium at Harvard University (FH), as well as the private collections of B.P. Sulistyo (BPS) 137 and M. Ryberg (MR) (Table 2). Several specimens from GB (Table 2: E. Bendiksen 645 07, E. 138 Bendiksen 523 07, E. Bendiksen 580 07, KHL 13899, E. Bendiksen 573 07, KHL 13496b, V. Spirin 8810a) were extracted using the DNeasy Plant Mini Kit (Qiagen, Stanford, CA), whereas 139 specimens from FH were extracted using the Extract-N-Amp Plant PCR Kit (Sigma-Aldrich, St. 140 Louis, MO) according to Haelewaters et al. (2018), or the E.Z.N.A. HP Fungal DNA Kit (Omega 141 Bio-Tek, Norcross, GA) following the manufacturer's instructions. Specimens from UPS, BPS, 142 and MR, as well as the rest of specimens from GB were extracted using a modified 143 144 CTAB/chloroform-isoamyl alcohol DNA extraction (Cubero et al., 1999). Approximately 5 × 5 mm hymenium was picked from the substrate and grinded using a micropestle in 500 µl of 2% 145 146 CTAB extraction buffer (100 mL Tris, 20 mM Na₂EDTA, 1.4 M NaCl, pH 8.0) with 1% βmercaptoethanol. The resulting mixture was then incubated at 65 °C for up to 2 hours. 147 Subsequently, 500 µl of chloroform: isoamyl alcohol (24:1) was added and the mixture was 148 shaken horizontally at low speed for 1 hour before centrifugation at 12,000 rpm for 14 min. 149 Following this, 360 µl of the upper phase was transferred into a new tube and 240 µl of cold 150 151 isopropanol was added. After the sample precipitated overnight at cold temperature, it was centrifuged and the resulting DNA pellet was washed using wash buffer (76% EtOH, 10 mM 152 153 ammonium acetate). Finally, the DNA was dissolved in 50 µl TE buffer (10 mM Tris, 1 mM

EDTA, pH 8.0), and its concentration and integrity were determined by means of Qubit Fluorometric Quantitation (Invitrogen, Carlsbad, CA) and gel electrophoresis.

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

PCR amplification, sequencing, and sequence analyses

Six molecular markers were used in this study: nuclear ribosomal regions of ITS1, 5.8S, ITS2, and LSU, as well as the protein coding regions of rpb2 and tef1 (Binder et al., 2010; Matheny et al., 2007; Miettinen et al., 2012; Zhao et al., 2017). Amplification of rpb2 targeted the region between conserved domains 5 and 7 (Liu et al., 1999), whereas for tef1 the target region was between exons 4 and 8 (Wendland and Kothe, 1997). Primers used for PCR and sequencing of these target regions are listed in Table 3. Modifications to two primers used in previous studies were also done to facilitate amplification and sequencing of Atheliales taxa. LB-W-R is a reverse-complement of LB-W (Tedersoo et al., 2008), used to bridge the gap in the sequencing of LSU PCR products. Additionally, EF1-1577Fa was based on EF1-1577F (Rehner and Buckley, 2005) with one nucleotide difference for better priming in Atheliales, and this primer was designed using the dataset of Binder et al., (2010). Cycling conditions for the amplification of ITS began with initial denaturation at 95 °C for 3 min, followed by 35-40 cycles of denaturation at 95 °C for 15 s, annealing at 55 °C for 30 s, and extension at 72 °C for 1 min, concluded by final extension at 72 °C for 10 min. LSU amplification used similar cycling conditions as ITS, but with annealing temperature of 48 °C. Cycling conditions for the amplification of rpb2 and tef1 were based on the methods of Rehner and Buckley (2005) and Matheny et al. (2007). The program started with denaturation at 94 °C for 2 min, 8 cycles of denaturation at 94 °C for 40 s, annealing at 60 °C for 40 s with 1 °C

decrease/cycle, and extension at 72 °C for 1-2 min, followed by 36 cycles of denaturation at 94 °C for 45 s, annealing at 53 °C for 90 s, and extension at 72 °C for 1-2 min, concluded by final extension at 72 °C for 10 min. All PCR products were cleaned by means of ExoSAP-IT (Applied Biosystems, Foster City, CA) and sent for sequencing to Macrogen Europe (Amsterdam, the Netherlands). Purification and sequencing of PCR products for samples obtained from FH were outsourced to Genewiz (South Plainfield, NJ). Sequencing reads were assembled, assessed, and edited using CodonCode Aligner (CodonCode Corporation, Centerville, MA) or Sequencher 4.10.1 (Gene Codes Corporation, Ann Arbor, MI). To confirm their identities and filter out contaminations, ITS sequences of all samples were blasted against the UNITE database (Kõljalg et al., 2013; https://unite.ut.ee/).

Dataset assembly and multiple sequence alignment

We constructed two datasets: an Agaricomycetes-wide dataset and an Atheliales sensu stricto dataset. The Agaricomycetes dataset comprised representatives of each order in the class (except Hysterangiales and Geastrales in the Phallomycetidae), with Dacrymycetes as outgroup. This Agaricomycetes dataset was used to identify the members of Atheliales sensu stricto and to ascertain the phylogenetic position of several taxa that had not yet been considered in a phylogenetic context. Based on the result of this dataset's phylogenetic analysis, we then constructed the Atheliales sensu stricto dataset, with Atheliales as ingroup, and Lepidostromatales and Boletales as outgroups.

In total, 108 sequences were newly generated during this study: 31 ITS, 32 LSU, 26 *rpb2*, and 19 *tef1* sequences. These were supplemented with 310 sequences downloaded from NCBI GenBank

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

for phylogenetic analyses. The complete list of taxa and GenBank accession numbers can be found in Table 2. For both datasets, taxa without LSU were excluded from subsequent analyses to avoid indistinguishable branches in the tree (Sanderson et al., 2010). The molecular markers for the Agaricomycetes dataset were LSU, 5.8S, rpb2, and tef1. The ITS regions (ITS1 and ITS2) were excluded from the Agaricomycetes dataset to avoid erroneous alignment due to the large numbers of indels (Tedersoo et al., 2018). Furthermore, we also excluded the third codon positions of both rpb2 and tef1 from the Agaricomycetes dataset since this position is prone to saturation under broad taxonomic range (Binder et al., 2010; Matheny et al., 2007). This finding was supported by preliminary analyses, which showed that the exclusion of third codon positions increased overall support values. However, the opposite was true for the Atheliales dataset due to its narrower taxonomic breadth; as a result, third codon positions were included in this dataset. All three ITS regions, ITS1, 5.8S, and ITS2, were also included in the Atheliales dataset since direct comparison suggested that they contained significant phylogenetic signals as marked by the change in overall support values. Alignments and overall data management were done in Geneious v.10.2 (Biomatters, Auckland, New Zealand). Sequences were grouped according to their respective region and aligned separately. Full-length ITS1, 5.8S, and ITS2 regions were identified and separated using ITSx (Bengtsson-Palme et al., 2013). Multiple sequence alignments were carried out using MAFFT v7.388 (Katoh et al., 2002; Katoh and Standley, 2013). LSU, rpb2, and tef1 were aligned using the MAFFT E-INS-I algorithm, whereas G-INS-I was used for aligning full-length 5.8S, ITS1, and ITS2 sequences. Afterwards, alignments were improved by realigning several challenging regions, manual adjustments, including trimming the ends of sequences and the removal of introns from *rpb2* and *tef1* alignments.

Phylogenetic analyses

Prior to phylogenetic analyses, the topological congruence among different regions was
evaluated using RAxML v8.2.12 (Stamatakis, 2014), with the GTRGAMMA model and 500
rapid bootstrap replicates. Since no well-supported conflict (BS≥75) was found among the
topologies of each region, the sequences were concatenated for further analyses. For each
dataset, partitioning schemes and substitution models were determined using PartitionFinder2
(PF2) (Kainer and Lanfear, 2015). Phylogenetic trees were estimated based on maximum
likelihood (ML) using RAxML v8.2.12 (Stamatakis, 2014) and Bayesian inference (BI) with
MrBayes v3.2.7a (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003). All PF2,
ML, and BI analyses were done on the CIPRES Science Gateway webserver (Miller et al., 2010).
Input for PF2 was the concatenated alignment with user-defined data blocks for each region as
well as each codon position for rpb2 and tef1 (only the 1st and 2nd for the Agaricomycetes
dataset and all three for the Atheliales dataset), analyzed using the greedy algorithm (Lanfear et
al., 2012) and based on Bayesian information criterion (BIC), with options for models according
to those that are available in either RAxML or MrBayes. Consequently, phylogenetic analyses
were done following the partitioning scheme and substitution model recommended by PF2
(Table 4).
For RAxML analyses, a phylogenetic tree was inferred through 1000 rapid bootstrap replicates.
Since the specification of different models among partitions is not possible with RAxML,
GTRGAMMA+I was selected as it fitted most of the partitions. As for MrBayes analyses, the
MrBayes block appended to the PF2 output was directly used to define the partitions as well as

their respective substitution models, with independent estimation of substitution rate matrix, gamma shape parameter, transition/transversion rate ratio, proportion of invariant sites, and character state frequencies for each partition. Each MrBayes analysis was performed with two separate runs and four chains for each run, for 100,000,000 generations with a stop rule based on max standard deviation of split frequencies below 0.01 and sampling of trees every 1,000 generations. Tracer v1.7 (Rambaut et al., 2018) was used to assess the convergence of parameter values for each run. FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/), TreeGraph2 (Stöver and Müller, 2010), and Inkscape (https://inkscape.org/en/) were used to visualize trees and edit the final figures.

RESULTS

Phylogenetic analyses of the Agaricomycetes dataset

Alignment statistics for the *Agaricomycetes* dataset are summarized in Table 5. The final concatenated alignment for the *Agaricomycetes* dataset contained 3254 total characters, 2841 of which were variable (87.30%), with mean coverage of 80.22%. Furthermore, based on subsequent RAxML searches the corresponding alignment contained 1997 distinct alignment patterns and a proportion of gaps and completely undetermined characters of 36.30%. Partitioned RAxML analyses resulted in the best scoring tree with a likelihood value of -42267.72. In addition to this, MrBayes analyses, which consisted of two runs, converged into a stable distribution with mean likelihood value of -42251.59 and -42253.66, respectively. There was no significant conflict between the RAxML and MrBayes analyses. The topology shown in Figure 3 is based on the ML tree, with bootstrap (BS) support and posterior probability (PP) values from

265 the BI consensus tree. To facilitate discussion, support values are mentioned in the text as (BS/PP). 266 The reconstructed phylogeny of Agaricomycetes (Figure 3) recovered species that had been 267 classified in *Atheliales s.l.* in the following major groups with strong support (BS\ge 75/PP\ge 0.95): 268 Byssoporia terrestris in Russulales (96/1.00), Digitatispora marina in Agaricales (98/1.00), 269 270 Lyoathelia laxa in Hymenochaetales (87/1.00), and Pteridomyces galzinii in Trechisporales 271 (100/1.00). Two additional species were retrieved in other orders, receiving weak to moderate BS support but strong PP values: Hypochnella violacea in Polyporales (60/0.99), and 272 Leptosporomyces septentrionalis in Amylocorticiales (55/1.00). The order Lepidostromatales 273 was inferred as sister group to Atheliales, but without strong support in the ML analysis 274

(49/0.96), and *Boletales* as sister to the *Atheliales-Lepidostromatales* clade (34/0.96). *Atheliales*

was strongly supported (89/0.99) and contained Stereopsis vitellina, in congruence with previous

Phylogenetic analyses of the Atheliales sensu stricto dataset

results by Sjökvist et al. (2012).

275

276

277

278

279

280

281

282

283

284

285

286

287

The *Atheliales* dataset consisted of 59 ingroup taxa and 11 outgroup taxa (2 *Lepidostromatales* and 9 *Boletales* taxa). Various alignment statistics for the *Atheliales* dataset are summarized in Table 5. The final concatenated alignment added up to 3713 total characters, 3130 of which were variable (84.30%), with mean coverage level of 71.85%. Based on successive RAxML searches, the alignment consisted of 2036 distinct alignment patterns with the proportion of gaps and completely undetermined characters of 40.53%. Partitioned RAxML analyses of the dataset yielded a final optimized likelihood value of -33904.79, whereas the two MrBayes runs each converged into a stable distribution with mean likelihood of -33449.37 and -33451.04, respectively. Similar to the *Agaricomycetes* dataset, the best tree from RAxML and the

288	consensus tree from MrBayes analyses showed congruent topology without any strongly
289	supported conflict. The reconstructed ML phylogeny of Atheliales is shown in Figure 4 with ML
290	BS and Bayesian PP values.
291	In the resulting Atheliales phylogeny (Figure 4), Lobulicium occultum was placed as sister to the
292	rest of Atheliales taxa, which formed a clade with relatively strong support (72/1.00). Because of
293	its unique and isolated phylogenetic position in combination with a distinct spore morphology
294	and ecology, we propose to place Lobulicium in a new family, Lobuliciaceae. Atheliales was
295	further divided into four major clades with moderate to strong support, proposed to correspond to
296	families sensu Jülich (1982): Atheliaceae (92/1.00) with Athelia and Fibulomyces;
297	Byssocorticiaceae (55/1.00) with Athelopsis, Byssocorticium, and Leptosporomyces;
298	Pilodermataceae (83/1.00) with Piloderma, Tretomyces, and Stereopsis vitellina; and
299	Tylosporaceae (89/1.00) with Amphinema and Tylospora. A number of genera were found to be
300	non-monophyletic, including Amphinema, Athelia, Athelopsis, and Leptosporomyces. In addition
301	to this, Athelopsis subinconspicua and Leptosporomyces raunkiaeri could not be placed with
302	confidence in any of the proposed families. These two taxa formed a maximum supported clade
303	(100/1.00), which was placed sister to <i>Pilodermataceae</i> with only high PP support (45/0.99).

304

305

TAXONOMY

- 306 Atheliales Jülich (1982) emend.
- 307 Bibliotheca Mycologica 85: 343 (1982)
- 308 **Type family**: Atheliaceae Jülich.

309	Description: Basidiomata annual, resupinate or spathulate, soft to tough, byssoid, pellicular or
310	membraneous; hymenium smooth; hyphal system monomitic, septa with or without clamps,
311	subicular hyphae sometimes with encrustation, hyphal strands present or absent; cystidia present
312	or absent; basidia clavate to pedunculate, with 2 or 4 sterigmata; basidiospores smooth or
313	verruculose, globose, elliptic, cylindrical, or lobed, thin- to slightly thick-walled, never amyloid
314	or dextrinoid, sometimes cyanophilous. Saprotrophic, ectomycorrhizal, or parasitic on plants and
315	lichens.
316	Confirmed genera: Amphinema, Athelia, Athelopsis, Byssocorticium, Fibulomyces,
317	Leptosporomyces, Lobulicium, Piloderma, Tretomyces, Tylospora.
318	Remarks: Jülich (1982) included four families in the order: Atheliaceae, Byssocorticiaceae,
319	Pilodermataceae, and Tylosporaceae. Here we confirm that all four families should be accepted
320	and that a fifth family, Lobuliciaceae fam. nov., should be added. Athelopsis subinconspicua and
321	Leptosporomyces raunkiaerii are currently left as Atheliales incertae sedis.
322	Our results showed that Pteridomyces (type: P. galzinii (Bres.) Jülich) should be placed in
323	Trechisporales and Lyoathelia (type: L. laxa (Burt) Hjortstam & Ryvarden) in Hymenochaetales
324	(Figure 3). Pteridomyces galzinii differs from Atheliales through the presence of sterile hyphal
325	pegs and adnate, slightly ceraceous basidiomata (Gorjon et al., 2012; Jülich, 1979; Nakasone,
326	2013). Lyoathelia laxa has pellicular-membraneous basidiomata like most species in Atheliales
327	but differs by having doliform-pedunculate basidia and well-differentiated, capitate cystidia
328	(Hayashi, 1974; Hjortstam and Ryvarden, 2004; Jülich, 1972).

329

330

Atheliaceae Jülich (1982) emend.

331 **Type genus**: Athelia Pers., Traité champ. Comest. (Paris): 57 (1818) – Figure 2A. Description: Basidiomata annual, resupinate, effused, loosely adnate, pellicular, undifferentiated 332 333 margin; hymenium smooth, sometimes slightly plicate when fresh, light colored; hyphal system monomitic, septa with or without clamps, hyphae thin- to slightly thick-walled, in subiculum 334 335 loosely arranged, hyphal strands present in some species; cystidia absent; basidia clavate, rarely 336 pedunculate, arranged in clusters, with 2-4 sterigmata; basidiospores thin-walled, hyaline, 337 smooth, subglobose to elliptic or fusoid, neither amyloid, dextrinoid nor cyanophilous. Saprotrophic on various substrates, rarely parasitic on plants or lichens. 338 Genera: Athelia, Fibulomyces Jülich. 339 Remarks: Jülich (1982) included also the genera Athelopsis, Caerulicium, Confertobasidium, 340 Leptosporomyces, and Luellia in Atheliaceae. Here we show that Athelopsis and 341 342 Leptosporomyces belong in Byssocorticiaceae. Caerulicium seems to be closely related to Byssocorticium but this can only be confirmed after sequencing of the type species, C. 343 344 neomexicanum. Confertobasidium (type: C. olivaceoalbum) has its place in Russulales (Larsson 345 and Larsson, 2003), and *Luellia* seems to belong in *Trechisporales* (Larsson, 2007). Athelia and Fibulomyces share a pellicular basidioma and basidia arranged in clusters (Eriksson 346 347 and Ryvarden, 1975, 1973). The decision to keep the two genera separate has been questioned (Eriksson and Ryvarden, 1973). Our analyses show that if the current concept of Athelia is to be 348 maintained, then Fibulomyces must be reduced to synonomy. If, on the other hand, we want to 349 keep Fibulomyces separate, then Athelia bombacina and A. singularis must be transferred to a 350 new genus. Morphologically, A. bombacina, A singularis, and F. mutabilis are united by their 351 352 consistently clamped hyphae (Eriksson et al., 1984, 1978; Kunttu et al., 2016). Eriksson and

353	Ryvarden (1973) stated that A. bombacina resembles F. mutabilis morphologically and even
354	ecologically. Athelia singularis, on the other hand, is morphologically closer to A. fibulata
355	(Kunttu et al., 2016), which is phylogenetically further related (Figure 4). More data are needed
356	before taxonomic changes can be made.
357	A future circumscription of Athelia should include more related taxa as well as an effort to
358	delimit the type species, A. epiphylla (Figure 2A). Eriksson and Ryvarden (1973) noted that A.
359	epiphylla is a complex with a considerable variation in morphology and they admittedly adopted
360	a wide species concept when treating the species for North Europe.
361	
362	Byssocorticiaceae Jülich (1982) emend.
363	Type genus : <i>Byssocorticium</i> Bondartsev & Singer, Mycologia 36: 69 (1944) – Figure 2B.
364	Description: Basidiomata annual, resupinate, effused, soft, byssoid to membranous, easily
365	detached, margin undifferentiated; hymenium smooth, continuous, white, blue or greenish blue;
366	hyphal system monomitic, septa with or without clamps, hyphae thin-walled or slightly thick-
367	walled, hyphal strands present or absent; cystidia absent; basidia clavate or pedunculate, with
368	four sterigmata; basidiospores smooth, globose, elliptic or cylindrical, thin- or slightly thick-
369	walled, neither amyloid, dextrinoid nor cyanophilous. Saprotrophic or ectomycorrhizal.
370	Genera: Athelopsis Oberw. ex Parmasto, Byssocorticium, Leptosporomyces Jülich.
371	Remarks: Jülich (1982) included three genera in this family, beside the type genus also
372	Byssoporia and Hypochnopsis. However, Byssoporia has its place near Albatrellus in Russulales
373	(Bruns et al., 1998; Larsson, 2007; Smith et al., 2013), and Hypochnopsis is a synonym of

374	Amaurodon and belongs to Thelephorales (Kõljalg, 1996). In addition to the type genus,
375	Byssocorticiaceae now includes Athelopsis and Leptosporomyces, both of which are in need of
376	revision as they are non-monophyletic. This has been shown in the present study as well as in
377	previous work (Hodkinson et al., 2014; Larsson, 2007).
378	Athelopsis was introduced to accommodate four species with an Athelia-like basidioma but
379	having pedunculate instead of clavate basidia (Parmasto, 1968). Of these four species, only the
380	type, Athelopsis glaucina, remains. Several other species have subsequently been added to the
381	genus but a great majority of them are probably placed elsewhere. In our Atheliales analysis, A.
382	glaucina was placed as sister to the rest of Byssocorticiaceae with moderate ML support
383	(50 <bs<75) (figure="" 4).="" and<="" be="" but="" however,="" its="" placement="" pp="" seems="" strong="" support="" td="" to="" unstable=""></bs<75)>
384	affected by dataset composition, as it clustered with Athelia in the Agaricomycetes dataset with
385	strong support (Figure 3). More data is needed to ascertain its position within the
386	Byssocorticiaceae.
387	Jülich (1982) introduced Leptosporomyces to accommodate species with Athelia-like
388	basidiomata but with short-cylindrical instead of clavate basidia. The genus was introduced with
389	five species although subsequent additions have raised the number of species to 15 (He et al.,
390	2019; Index Fungorum, 2020). For most of these, DNA sequences are currently not available. In
391	our analyses, only the type species was retrieved in Byssocorticiaceae, whereas
392	Leptosporomyces raunkiaeri was placed in a separate clade with Athelopsis subinconspicua, both
393	currently ranked as Atheliales incertae sedis.

394

395

Lobuliciaceae Sulistyo, K.H. Larss., & M. Ryberg, fam. nov.

396

415

Mycobank no.: MB 835270

397	Type and single genus: Lobulicium K.H. Larss. & Hjortstam, Mycotaxon 14: 69 (1982).
398	Description : Basidiomata annual, resupinate, thin and soft, easily detached, margin very finely
399	fibrillose; hymenium smooth, porulose, white; hyphal system monomitic, septa with clamps
400	hyphae thin-walled; cystidia absent; basidia small, clavate, with four sterigmata, basally
401	clamped; basidiospores strongly lobed, neither amyloid, dextrinoid nor cyanophilous
402	Presumably saprotrophic on coniferous trees.
403	Remarks: Lobulicium is a monotypic genus and contains only L. occultum, a saprotrophic
404	species that produces small pellicular fruiting bodies with a soft and loose hymenial construction
405	typical of most Atheliales members. However, it is notable for its peculiar basidiospores (Figure
406	2C), which are strongly lobed but still bisymmetrical. Lobulicium occultum also has a specialized
407	habitat, growing in the cracks formed when trunks of Abies or Picea are subjected to brown
408	cubic-rot decay by Fomitopsis pinicola (Hjortstam and Larsson, 1982; Nordén et al., 1999). This
409	habitat preference is somewhat similar to that of A. subinconspicua (Kotiranta and Saarenoksa
410	2005). Despite always being associated with brown-rot, <i>Lobulicium</i> is very likely not performing
411	brown-rot but rather feeds from organic molecules left by other organisms. This species could be
412	an interesting candidate for genome sequencing, in relation to its nutritional mode.
413	
414	Pilodermataceae Jülich (1982) emend.

Type genus: *Piloderma* Jülich, Ber. dt. bot. Ges. 81: 415 (1969) – Figure 2E.

- Description: Basidiomata annual, resupinate and effused or spathulate, soft, byssoid to 416 417 membranous, margin undifferentiated; hymenium smooth, continuous or porulose, white, yellowish or olivaceous brown; hyphal system monomitic, septa with or without clamps, hyphal 418 strands present or absent, subicular hyphae often with crystals; cystidia absent; basidia clavate, 419 with 2-4 sterigmata; basidiospores smooth, subglobose to elliptic, slightly thick-walled, neither 420 amyloid nor dextrinoid, slightly cyanophilous. Saprotrophic or ectomycorrhizal. 421 422 Genera: Piloderma, Tretomyces, Stereopsis vitellina. **Remarks**: Only one genus, *Piloderma*, was mentioned in the original description of this family 423 (Jülich, 1982). Tretomyces lutescens, the type species of Tretomyces, was described as 424 Byssocorticium lutescens in Eriksson and Ryvarden (1973), but shares micro-morphological 425 characters with Piloderma (Kotiranta et al., 2011). The major difference in relation to the 426 427 original circumscription is the inclusion of *Stereopsis vitellina*, which produces stipitate stereoid fruiting bodies and thus deviates from all other species in Atheliales. The type species of 428 Stereopsis (S. radicans) belongs to the order Stereopsidales, and is characterized by two-spored 429 basidia and spores that become slightly angular upon drying (Sjökvist et al., 2014, 2012). These
 - (Reid, 1965). Piloderma species are completely devoid of clamps whereas Tretomyces species have clamps at all septa in hymenium and subhymenium and variably on subicular hyphae. Ecologically, both Piloderma and Tretomyces are ectomycorrhizal (Aučina et al., 2019; Erland and Söderström, 1990; Kyaschenko et al., 2017; Tedersoo et al., 2010). The nutritional mode of Stereopsis vitellina on the other hand, has been reported to be saprotrophic (Maaroufi et al., 2019),

features are lacking in S. vitellina. In addition, S. vitellina becomes brittle upon drying (Eriksson

et al., 1984) similar to most other Atheliales members, whereas S. radicans becomes tough

430

431

432

433

434

435

436

437

438

439	preferring very old pine-dominated forests (Kunttu et al., 2018). Piloderma was found to be
440	monophyletic in our analyses, although this monophyly lacked strong support in both ML and BI
441	analyses, whereas the Tretomyces clade was strongly supported. The interrelationships among
442	the three lineages are still unresolved.
443	
444	Tylosporaceae Jülich (1982) emend.
445	Type genus : <i>Tylospora</i> Donk, Taxon 9: 220 (1960) – Figure 2D.
446	Description: Basidiomata annual, resupinate, effused, soft to tough, byssoid to hypochnoid,
447	margin undifferentiated; hymenium smooth, porulose to continuous, white to yellowish or
448	brownish; hyphal system monomitic, septa with clamps, hyphae thin-walled to firm-walled,
449	hyaline to yellowish, subicular hyphae often with encrustation; cystidia present or absent; basidia
450	clavate, with (2-)4 sterigmata, always with a basal clamp; basidiospores elliptic, cylindrical,
451	triangular or lobed, thin-walled to slightly thick-walled, neither amyloid nor dextrinoid,
452	sometimes cyanophilous. Ectomycorrhizal.
453	Genera: Amphinema, Tylospora.
454	Remarks: The family was introduced with only one genus (Jülich, 1982). Whereas our concept
455	of the family corresponds to the /amphinema-tylospora lineage of Tedersoo et al. (2010), the
456	close relationship of Amphinema and Tylospora is surprising when considering the differences in
457	morphology. Stalpers (1993) suggested that Tylospora, with its lobed and ornamented
458	basidiospores, had affinities to Thelephorales. Amphinema has smooth basidiospores but stands
459	out by having cystidia, contrary to all other Atheliales. Eriksson (1958) suggested a relationship

with Hyphodontia, an idea that prevailed until DNA data became available (Eriksson and

460

161	Ryvarden, 1973; Jülich, 1982; Parmasto, 1968). Both genera form ectomycorrhiza with Picea
162	(Danielson and Pruden, 1989; Eberhardt et al., 1999; Taylor and Alexander, 1991).
163	In our phylogenetic analyses, Amphinema was not recovered as monophyletic (Figure 4).
164	Tylospora asterophora was placed between Amphinema byssoides (type) and A. diadema,
165	indicating that the latter species should be moved out of Amphinema. However, this arrangement
166	was not strongly supported by either BS or PP, and thus more data are needed before any
167	taxonomic changes are made. Additionally, Tylospora was also found to be non-monophyletic in
168	Tedersoo and Smith (2013).
169	
170	Atheliales incertae sedis
171	Athelopsis subinconspicua (Litsch.) Jülich
172	Leptosporomyces raunkiaerii (M.P. Christ.) Jülich
173	Two species included in our analyses did not cluster with any of the recognized families.
174	Athelopsis subinconspicua and Leptosporomyces raunkiaeri formed a strongly supported clade,
175	which was also inferred in previous studies (Binder et al., 2010; Hodkinson et al., 2014; Liu et
176	al., 2018). This clade seems to be closely related to the Pilodermataceae clade but this
177	relationship was only supported by PP (Figure 4). These two species are reported to be
178	saprotrophic (Ambrosio et al., 2014; Kubartová et al., 2012) but are morphologically rather
179	different, which is obvious from their generic placement. It is doubtful that they should be united
180	in the same genus. Leptosporomyces raunkiaeri is rather similar to the type of Leptosporomyces.
181	It differs primarily by somewhat larger basidiospores and by growing on dead angiosperm leaves
182	whereas L. galzinii is above all found on decaying conifer wood. Athelopsis subinconspicua has

typical pedunculate basidia but is in other respects not so similar to *A. glaucina*, the type species of *Athelopsis*. We believe the classification on genus level should first be disentangled before a clade name on family level is introduced.

DISCUSSION

488	The class-wide phylogeny (Figure 3) of this study made it possible to circumscribe Atheliales
489	sensu stricto. Each order included in this dataset received either strong support from both ML BS
490	(≥75) and Bayesian PP (≥0.95), or moderate support from ML BS (50-74) and strong support by
491	PP. The resulting topology of our four-locus Agaricomycetes dataset (Figure 3) lacked support
492	on several deep nodes, although it is largely congruent with previous studies (Binder et al., 2010;
493	Chen et al., 2019; Hodkinson et al., 2014; Liu et al., 2018; Nagy et al., 2015; Sjökvist et al.,
494	2014; Zhao et al., 2017). Atheliales was placed within Agaricomycetidae (96/1.00), as sister to
495	Lepidostromatales, although only with strong support from PP. The Atheliales-
496	Lepidostromatales clade was placed as sister to Boletales with weak ML BS support but strong
497	PP support. Close relationships among Atheliales, Boletales, and Lepidostromatales mirrors
498	results of previous studies using similar sets of genes (Chen et al., 2019; Liu et al., 2018; Zhao et
499	al., 2017). Unlike these studies, however, a sister relationship between Amylocorticiales and
500	Agaricales was not recovered in our analyses (Figure 3), further highlighting the uncertainty of
501	the placement of this order.
502	Only two members of Atheliales (Fibulorhizoctonia sp. — anamorph of Athelia sp. — and
503	Piloderma olivaceum) and five members of Amylocorticiales (Amylocorticium subincarnatum,
504	Anomoloma albolutescens, Anomoporia bombycine, A. myceliosa, and Plicaturopsis crispa) have

505	their genomes sequenced, while no genomes are available for any representative of
506	Lepidostromatales according to JGI's MycoCosm
507	(https://mycocosm.jgi.doe.gov/mycocosm/home, accessed 1 October 2020; Grigoriev et al.,
508	2012). Compared to the number of genomes of Agaricales and Boletales (147 and 59,
509	respectively), this number is very low. Future phylogenomic studies on the relationships among
510	orders within Agaricomycetidae should focus on sampling more taxa from Amylocorticiales,
511	Atheliales, and Lepidostromatales and carefully sort out the signal for different placements of
512	Amylocorticiales.
513	Out of 23 described genera of Atheliales sensu lato. (Table 1), 15 were included in our analyses,
514	of which five genera fell outside of Atheliales and are phylogenetically placed in other orders
515	(Figure 3, taxa in bold with an asterisk): Byssoporia (type: B. terrestris), Digitatispora (type: D.
516	marina), Hypochnella (type: H. violacea), Lyoathelia (type: L. laxa), and Pteridomyces (type: P.
517	galzinii). Byssoporia terrestris is placed within Russulales, specifically in Albatrellaceae
518	according to previous studies (Chen et al., 2016; Chen and Cui, 2014; Larsson, 2007; Smith et
519	al., 2013; Zhou and Dai, 2013), making it the only corticioid taxon in this family. Digitatispora
520	marina, a marine species, is placed in the Agaricales. Previous studies placed it within Niaceae,
521	closely related with other marine genera such as Calathella, Halocyphina, and Nia (Abdel-
522	Wahab et al., 2019; Azevedo et al., 2018). In our results (Figure 3), Leptosporomyces
523	septentrionalis clustered with Amylocorticiales. This was also shown in previous studies (Binder
524	et al., 2010; Song et al., 2016; Zhou et al., 2016), where it is found to be closely related to other
525	corticioid taxa with smooth hymenium: Amyloxenasma allantosporum and Serpulomyces
526	borealis. Hypochnella violacea, Lyoathelia laxa, and Pteridomyces galzinii clustered with
527	Polyporales, Hymenochaetales, and Trechisporales, respectively. Blasting the sequences against

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

UNITE's database indicated that H. violacea closely resembles Australohydnum dregeanum (*Phanerochaetaceae*), another corticioid taxon with purple fruiting body, whereas *L. laxa* is closely related to Poriodontia subvinosa (Schizoporaceae). For the aforementioned taxa of Atheliales sensu lato, their prior morphological association within Atheliales sensu lato largely stemmed from soft and pellicular fruiting bodies with microscopic characteristics that resemble core Atheliales taxa such as Athelia, Byssocorticium, and Piloderma (Eriksson and Ryvarden, 1975, 1973; Hjortstam, 1991; Jülich, 1972; Larsen and Zak, 1976). However, several authors have previously also expressed doubts regarding their association with Atheliales sensu lato (Eriksson et al., 1984; Gorjon et al., 2012; Hayashi, 1974; Larsson, 2007; Nakasone, 2013). On the other hand, the stipitate-stereoid species S. vitellina clustered within the Atheliales clade, as was also shown by Sjökvist et al. (2012). The phylogenetic placement of S. vitellina within Pilodermataceae is strongly supported, but not its relationship with other lineages within the family. This makes it difficult to infer the evolution of fruiting body type and nutritional modes within Pilodermataceae. Athelopsis and Leptosporomyces were found to be non-monophyletic, and the monophyly of Amphinema, Athelia, and Piloderma was unsupported. This can probably be attributed to incomplete taxon sampling in combination with low molecular data coverage. Although previous studies have found members of Athelia, Athelopsis, and Leptosporomyces to be phylogenetically affiliated with other orders (Binder et al., 2010; Ertz et al., 2008; Larsson, 2007; Miettinen and Larsson, 2011), this study confirmed that their respective type species belong to Atheliales. Notwithstanding, revisions of these genera is necessary especially for Athelia, the type genus of the family. Corticioid fungi are particularly prone to misidentification (Binder et al., 2005). To minimize this problem, we used specimens that were identified by known experts of corticioid

551 fungi. In addition, we utilized multiple collections for each species whenever possible. Future studies should build on this work by including type specimens. 552 Atheliales is a suitable group to study the evolutionary patterns of different nutritional modes 553 because of the remarkable diversity observed within the group (Adams and Kropp, 1996; 554 555 Matsuura et al., 2000; Stokland and Larsson, 2011; Tedersoo et al., 2010; Wenneker et al., 2017; 556 Yurchenko and Olubkov, 2003). Atheliaceae is dominated by saprotrophic taxa, with one 557 lichenicolous species (Athelia arachnoidea), while Byssocorticiaceae, Pilodermataceae, and Tylosporaceae are dominated by ectomycorrhizal taxa. Within Byssocorticiaceae, the earlier 558 branching taxa (Athelopsis glaucina, Leptosporomyces galzinii, and Leptosporomyces sp.) are 559 saprotrophic, which seemed to be the plesiomorphic state of the family. Although the overall 560 relationships among taxa within *Pilodermataceae* are still lacking in support, this seems to also 561 be the case within the family, as the earliest branching taxon likely is *Stereopsis vitellina*, a non-562 563 corticioid and reportedly saprotrophic species (Maaroufi et al., 2019). Tylosporaceae, on the other hand, seems to consist of strictly ectomycorrhizal species. However, our sampling only 564 565 represents a fraction of the true Atheliales diversity, thus it is possible that Tylosporaceae also contains saprotrophic members. Based on our analyses, the earliest branching taxon in Atheliales 566 is Lobulicium occultum, a saprotrophic species (Figure 4). It is likely that the plesiomorphic state 567 for nutrition in Atheliales is saprotrophic, and that ectomycorrhizal evolved multiple times in 568 different groups. Ectomycorrhizal symbiosis arose several times from saprotrophic ancestors 569 within fungi (Kohler et al., 2015; Tedersoo and Smith, 2013), as well as within smaller groups 570 (Sánchez-García and Matheny, 2017; Sato and Toju, 2019; Veldre et al., 2013). To make 571 conclusive statements on the evolution nutritional modes, more data, better phylogenetic 572 573 resolution on key nodes, and more comprehensive analyses of ancestral states are needed.

Compared with most other orders within Agaricomycetidae except Amylocorticiales, Atheliales
is relatively understudied and undersampled (Rosenthal et al., 2017). It is possible that Atheliales
contains undiscovered lineages. This gives hope to add taxa in the future that can break up long
branches and pinpoint evolutionary relationships that are currently unresolved (e.g., the
placement of A. subinconspicua and L. raunkiaeri, and the relationships among lineages).
Additionally, the different placement of A. glaucina depending on the composition of the dataset
and its relatively long branch, as well as the weakly-supported placement of the A.
subinconspicua-L. raunkiaeri clade suggest that these lineages might be composed of many
more taxa.
The classification proposed here is only a first step in improving the taxonomy of Atheliales, and
further refinement will be needed as more taxa will continue to be included in phylogenetic
analyses. Future systematic studies of Atheliales should include genera of Atheliales s.l. that
were not included in our study (Table 1): Athelicium, Athelocystis, Butlerelfia, Elaphocephala,
Hypochniciellum, Melzericium, and Mycostigma.

ACKNOWLEDGEMENTS

We are grateful to Ellen Larsson for the gift of DNA materials for some specimens included in this study, as well as for help in organizing the loan of materials from herbarium GU. We also thank Åsa Kruys for her help in organizing the loan of materials from UPS and Sten Svantesson for the gift of *Atheliales* materials. Lastly, we would like to thank Kapten Carl Stenholms Donationsfond for funding this work. D. Haelewaters was supported by Boston Harbor Now, the

595	National Park Service, and the Indiana Academy of Science (2019 Senior Research Grant, 2019
596	Winona Welch Award). We acknowledge invaluable input from anonymous reviewers.
597	
598	LITERATURE CITED
599	Abdel-Wahab, M., Jones, E., Abdel-Aziz, F., Bahkali, A., 2019. Nia lenicarpa sp. nov. (Niaceae,
500	Agaricales) from Red Sea mangroves in Saudi Arabia with comments on Nia vibrissa.
501	Phytotaxa 406, 157–168.
502	Adams, G., Kropp, B., 1996. Athelia arachnoidea, the sexual state of Rhizoctonia carotae, a
503	pathogen of carrot in cold storage. Mycologia 88, 459-472.
504	Ambrosio, E., Cecchi, G., Piazza, D.P., Mariotti, M.G., Zotti, M., 2014. Corticioid fungi
505	(Agaricomycetes, Basidiomycota) of Liguria (NW Italy): first contribution. Boll. Mus. Ist.
506	Biol. Univ. Genova 76, 1–28.
507	Aučina, A., Rudawska, M., Wilgan, R., Janowski, D., Skridaila, A., Dapkūnienė, S., Leski, T.,
508	2019. Functional diversity of ectomycorrhizal fungal communities along a peatland-forest
509	gradient. Pedobiologia (Jena). 74, 15–23.
510	Azevedo, E., Barata, M., Caeiro, M.F., 2018. Morphological and phylogenetic analyses of <i>Nia</i>
511	vibrissa, a marine Basidiomycota collected in Portuguese waters. Reg. Stud. Mar. Sci. 23,
512	53–59.
513	Bengtsson-Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., Wit, P. De,
514	Marisol, S., Ebersberger, I., Sousa, F. De, Amend, A.S., Jumpponen, A., Unterseher, M.,
515	Kristiansson, E., Abarenkov, K., Bertrand, Y.J.K., Sanli, K., Eriksson, K.M., Vik, U.,

616 Veldre, V., Nilsson, R.H., 2013. Improved software detection and extraction of ITS1 and 617 ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4, 914–919. 618 619 Binder, M., Hibbett, D.S., Larsson, K., Larsson, E., Langer, E., Langer, G., 2005. The 620 phylogenetic distribution of resupinate forms across the major clades of mushroom □ 621 forming fungi (Homobasidiomycetes). Syst. Biodivers. 3, 113–157. 622 Binder, M., Larsson, K.-H., Matheny, P.B., Hibbett, D.S., 2010. Amylocorticiales ord. nov. and Jaapiales ord. nov.: early diverging clades of Agaricomycetidae dominated by corticioid 623 forms. Mycologia 102, 865-880. 624 Boidin, J., Mugnier, J., Canales, R., 1998. Taxonomie moléculaire des Aphyllophorales. 625 Mycotaxon 66, 445-492. 626 627 Bruns, T., Szaro, T., Gardes, M., Cullings, K., Pan, J., Taylor, D., Horton, T., Kretzer, A., Garbelotto, M., Li, Y., 1998. A sequence database for the identification of ectomycorrhizal 628 basidiomycetes by phylogenetic analysis. Mol. Ecol. 7, 257–272. 629 Chen, C.-C., Cao, B., Hattori, T., Cui, B.-K., Chen, C.-Y., Wu, S.-H., 2019. Phylogenetic 630 placement of *Paratrichaptum* and reconsideration of Gloeophyllales. Fungal Syst. Evol. 5, 631 119–129. 632 Chen, J.J., Cui, B.K., 2014. Studies on Wrightoporia from china 3. Wrightoporia subavellanea 633 sp. nov. based on morphological characters and rDNA sequence data. Phytotaxa 175, 225– 634 234. 635 636 Chen, J.J., Cui, B.K., Dai, Y.C., 2016. Global diversity and molecular systematics of

637 Wrightoporia s.l. (Russulales, Basidiomycota). Persoonia Mol. Phylogeny Evol. Fungi 37, 21–36. 638 Cubero, O.F., Crespo, A., Fatehi, J., Bridge, P.D., 1999. DNA extraction and PCR amplification 639 method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Syst. Evol. 640 216, 243–249. 641 Dai, Y.C., 2011. A revised checklist of corticioid and hydnoid fungi in China for 2010. 642 643 Mycoscience 52, 69–79. Danielson, R., Pruden, M., 1989. The ectomycorrhizal status of urban spruce. Mycologia 81, 644 335-341. 645 de Vries, R., Lange, E., Wösten, H., Stalpers, J., 2008. Control and possible applications of a 646 novel carrot-spoilage basidiomycete, Fibulorhizoctonia psychrophila. Antonie van 647 Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 93, 407–413. 648 Dhingra, G.S., Singh, A.P., 2018. Validation of five corticioid species from Eastern Himalaya. 649 Mycotaxon 133, 693-695. 650 Donk, M., 1964. A conspectus of the families of Aphyllophorales. Persoonia-Molecular 651 652 Phylogeny Evol. Fungi 3, 199-324a. Duhem, B., 2013. Cinq corticiés inédits de France. Bull. la Société Mycol. Fr. 128, 65–104. 653 Eberhardt, U., Walter, L., Kottke, I., 1999. Molecular and morphological discrimination between 654 Tylospora fibrillosa and Tylospora asterophora mycorrhizae. Can. J. Bot. Can. Bot. 77, 11– 655 21. 656 657 Eriksson, J., 1958. Studies in the Heterobasidiomycetes and Homobasidiomycetes -

658 Aphyllophorales of Muddus National Park in North Sweden. Symb. Bot. Ups. 16, 1–172. Eriksson, J., Hjortstam, K., Ryvarden, L., 1984. Corticiaceae of North Europe Volume 7: 659 Schizopora-Suillosporium. Fungiflora, Oslo. 660 Eriksson, J., Hjortstam, K., Ryvarden, L., 1981. Corticiaceae of North Europe Volume 6: 661 Phlebia-Sarcodontia. Fungiflora, Oslo. 662 663 Eriksson, J., Hjortstam, K., Ryvarden, L., 1978. Corticiaceae of North Europe Volume 5: *Mycoaciella-Phanerochaete*. Fungiflora, Oslo. 664 Eriksson, J., Ryvarden, L., 1975. Corticiaceae of North Europe Volume 3: Coronicium-665 *Hyphoderma*. Fungiflora, Oslo. 666 Eriksson, J., Ryvarden, L., 1973. The Corticiaceae of North Europe Volume 2: Aleurodiscus-667 Confertobasidium. Fungiflora, Oslo. 668 Erland, S., Söderström, B., 1990. Effects of liming on ectomycorrhizal fungi infecting *Pinus* 669 sylvestris L. I. Mycorrhizal infection in limed humus in the laboratory and isolation of fungi 670 from mycorrhizal roots. New Phytol. 115, 675-682. 671 Ertz, D., Lawrey, J.D., Sikaroodi, M., Gillevet, P.M., Fischer, E., Killmann, D., Sérusiaux, E., 672 673 2008. A new lineage of lichenized basidiomycetes inferred from a two-gene phylogeny: the Lepidostromataceae with three species from the tropics. Am. J. Bot. 95, 1548–1556. 674 675 Ezhov, O., Zmitrovich, I., Ruokolainen, A., 2017. Checklist of aphyllophoroid fungi (Agaricomycetes, basidiomycota) in boreal forests of the Solovetsky Archipelago 676 (Arkhangelsk Region, European Russia). Check List 13, 789–803. 677 678 Ginns, J., 1998. Genera of the North American Corticiaceae sensu lato. Mycologia 90, 1–35.

- 679 Gorjon, S., Greslebin, A., Rajchenberg, M., 2012. The genus Athelopsis (Atheliales,
- Basidiomycota) in the Patagonian Andes. Sydowia 64, 29–37.
- 681 Gorjón, S.P., Bernicchia, A., 2013. Threats and state of conservation of aphyllophoroid fungi in
- the Mediterranean. Acta Mycol. 48, 247–255.
- 683 Gorjón, S.P., Hallenberg, N., 2013. Some new species and a first checklist of corticioid fungi
- 684 (Basidiomycota) from Chile. Mycol. Prog. 12, 185–192.
- 685 Grigoriev, I., Nordberg, H., Shabalov, I., Aerts, A., Cantor, M., Goodstein, D., Kuo, A.,
- Minovitsky, S., Nikitin, R., Ohm, R., Otillar, R., Poliakov, A., Ratnere, I., Riley, R.,
- Smirnova, T., Rokhsar, D., Dubchak, I., 2012. The genome portal of the Department of
- Energy Joint Genome Institute. Nucleic Acids Res. 40, D26-32.
- Haelewaters, D., Dirks, A.C., Kappler, L.A., Mitchell, J.K., 2018. A preliminary checklist of
- fungi at the Boston Harbor Islands. Northeast. Nat. 25, 45–76.
- Hayashi, Y., 1974. Studies on the genus *Peniophora* Cke. and its allied genera in Japan. Bull.
- 692 Gov. For. Exp. Stn. 260, 1–98.
- 693 He, M.Q., Zhao, R.L., Hyde, K.D., Begerow, D., Kemler, M., Yurkov, A., McKenzie, E.H.,
- Raspé, O., Kakishima, M., Sánchez-Ramírez, S., Vellinga, E.C., Halling, R., Papp, V.,
- Zmitrovich, I. V, Buyck, B., Ertz, D., Wijayawardene, N.N., Cui, B.K., Schoutteten, N.,
- 696 Liu, X.Z., Li, T.H., Yao, Y.J., Zhu, X.Y., Liu, A.Q., Li, G.J., Zhang, M.Z., Ling, Z.L., Cao,
- B., Antonín, V., Boekhout, T., da Silva, B.D.B., De Crop, E., Decock, C., Dima, B., Dutta,
- 698 A.K., Fell, J.W., Geml, J., Ghobad-Nejhad, M., Giachini, A.J., Gibertoni, T.B., Gorjón,
- 699 S.P., Haelewaters, D., He, S.H., Hodkinson, B.P., Horak, E., Hoshino, T., Justo, A., Lim,
- Y.W., Menolli, N., Mešić, A., Moncalvo, J.M., Mueller, G.M., Nagy, L.G., Nilsson, R.H.,

- Noordeloos, M., Nuytinck, J., Orihara, T., Ratchadawan, C., Rajchenberg, M., Silva-Filho,
- A.G.S., Sulzbacher, M.A., Tkalčec, Z., Valenzuela, R., Verbeken, A., Vizzini, A.,
- Wartchow, F., Wei, T.Z., Weiß, M., Zhao, C.L., Kirk, P.M., 2019. Notes, outline and
- divergence times of Basidiomycota. Fungal Divers. 99, 105–367.
- 705 https://doi.org/10.1007/s13225-019-00435-4
- Hibbett, D.S., Binder, M., Bischoff, J.F., Blackwell, M., Cannon, P.F., Eriksson, O.E., Huhndorf,
- S., James, T., Kirk, P.M., Lücking, R., Thorsten Lumbsch, H., Lutzoni, F., Matheny, P.B.,
- McLaughlin, D.J., Powell, M.J., Redhead, S., Schoch, C.L., Spatafora, J.W., Stalpers, J.A.,
- Vilgalys, R., Aime, M.C., Aptroot, A., Bauer, R., Begerow, D., Benny, G.L., Castlebury,
- L.A., Crous, P.W., Dai, Y.C., Gams, W., Geiser, D.M., Griffith, G.W., Gueidan, C.,
- Hawksworth, D.L., Hestmark, G., Hosaka, K., Humber, R.A., Hyde, K.D., Ironside, J.E.,
- Kõljalg, U., Kurtzman, C.P., Larsson, K.H., Lichtwardt, R., Longcore, J., Miadlikowska, J.,
- Miller, A., Moncalvo, J.M., Mozley-Standridge, S., Oberwinkler, F., Parmasto, E., Reeb,
- V., Rogers, J.D., Roux, C., Ryvarden, L., Sampaio, J.P., Schüßler, A., Sugiyama, J., Thorn,
- R.G., Tibell, L., Untereiner, W.A., Walker, C., Wang, Z., Weir, A., Weiss, M., White,
- M.M., Winka, K., Yao, Y.J., Zhang, N., 2007. A higher-level phylogenetic classification of
- 717 the Fungi. Mycol. Res. 111, 509–547.
- 718 Hjortstam, K., 1991. *Athelopsis* instead of *Pteridomyces* (Cortciaceae, Basidiomycetes).
- 719 Mycotaxon 42, 149–154.
- Hjortstam, K., Larsson, K.-H., 1982. Notes on Corticiaceae (Basidiomycetes) X. Mycot 15, 69–
- 721 74.
- Hjortstam, K., Ryvarden, L., 2010. Athelocystis capitata, a new genus and species from Brazil,

- with brief notes on *Athelopsis*, Corticioid fungi (Basidiomycota). Synopsis Fungorum 27,
- 724 20–25.
- Hjortstam, K., Ryvarden, L., 2004. Some new and noteworthy corticioid fungi (Basidiomycotina,
- Aphyllophorales) from Japan. Synopsis Fungorum 18, 8–13.
- Hodkinson, B.P., Moncada, B., Lücking, R., 2014. Lepidostromatales, a new order of lichenized
- fungi (Basidiomycota, Agaricomycetes), with two new genera, Ertzia and
- 729 Sulzbacheromyces, and one new species, Lepidostroma winklerianum. Fungal Divers. 64,
- 730 165–179.
- Huelsenbeck, J.P., Ronquist, F., 2001. MRBAYES: Bayesian inference of phylogenetic trees.
- 732 Bioinformatics 17, 754–755.
- 733 Index Fungorum [WWW Document], 2020. URL
- http://www.indexfungorum.org/names/Names.asp (accessed 2.3.20).
- Jülich, W., 1982. Higher Taxa of Basidiomycetes, Bibliotheca Mycologica.
- Jülich, W., 1979. Studies in Resupinate Basidiomycetes VI. Persoonia 10, 323–336.
- Jülich, W., 1972. Monographie der Athelieae (Corticiaceae, Basidiomycetes). Willdenowia.
- 738 Beih. 7.
- Kainer, D., Lanfear, R., 2015. The effects of partitioning on phylogenetic inference. Mol. Biol.
- 740 Evol. 32, 1611–1627.
- Katoh, K., Misawa, K., Kuma, K., Miyata, T., 2002. MAFFT: a novel method for rapid multiple
- sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–66.
- Katoh, K., Standley, D.M., 2013. MAFFT Multiple Sequence Alignment Software Version 7:

- improvements in performance and usability. Mol. Biol. Evol. 30, 772–780.
- Kohler, A., Kuo, A., Nagy, L.G., Morin, E., Barry, K.W., Buscot, F., Canbäck, B., Choi, C.,
- Cichocki, N., Clum, A., Colpaert, J., Copeland, A., Costa, M.D., Doré, J., Floudas, D., Gay,
- G., Girlanda, M., Henrissat, B., Herrmann, S., Hess, J., Högberg, N., Johansson, T., Khouja,
- H.R., Labutti, K., Lahrmann, U., Levasseur, A., Lindquist, E.A., Lipzen, A., Marmeisse, R.,
- Martino, E., Murat, C., Ngan, C.Y., Nehls, U., Plett, J.M., Pringle, A., Ohm, R.A., Perotto,
- S., Peter, M., Riley, R., Rineau, F., Ruytinx, J., Salamov, A., Shah, F., Sun, H., Tarkka, M.,
- 751 Tritt, A., Veneault-Fourrey, C., Zuccaro, A., Tunlid, A., Grigoriev, I. V., Hibbett, D.S.,
- Martin, F., 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis
- genes in mycorrhizal mutualists. Nat. Genet. 47, 410–415.
- Kõljalg, U., 1996. *Tomentella* (Basidiomycota) and related genera in temperate Eurasia.
- 755 Synopsis Fungorum 9, 1–213.
- Kõljalg, U., Nilsson, R.H., Abarenkov, K., Tedersoo, L., Taylor, A.F.S., Bahram, M., Bates,
- S.T., Bruns, T.D., Bengtsson-Palme, J., Callaghan, T.M., Douglas, B., Drenkhan, T.,
- Eberhardt, U., Dueñas, M., Grebenc, T., Griffith, G.W., Hartmann, M., Kirk, P.M., Kohout,
- P., Larsson, E., Lindahl, B.D., Lücking, R., Martín, M.P., Matheny, P.B., Nguyen, N.H.,
- Niskanen, T., Oja, J., Peay, K.G., Peintner, U., Peterson, M., Põldmaa, K., Saag, L., Saar, I.,
- Schüßler, A., Scott, J.A., Senés, C., Smith, M.E., Suija, A., Taylor, D.L., Telleria, M.T.,
- Weiss, M., Larsson, K.-H., 2013. Towards a unified paradigm for sequence-based
- identification of fungi. Mol. Ecol. 22, 5271–5277.
- Kotiranta, H., Larsson, K.-H., Saarenoksa, R., Kulju, M., 2011. *Tretomyces gen. novum*,
- 765 Byssocorticium caeruleum sp. nova, and new combinations in Dendrothele and

- 766 Pseudomerulius (Basidiomycota). Ann. Bot. Fenn. 48, 37–48.
- Kotiranta, H., Saarenoksa, R., 2005. The genus Athelopsis (Aphyllophorales, Corticiaceae) in
- 768 Finland. Ann. Bot. Fenn. 42, 335–342.
- Kubartová, A., Ottosson, E., Dahlberg, A., Stenlid, J., 2012. Patterns of fungal communities
- among and within decaying logs, revealed by 454 sequencing. Mol. Ecol. 21, 4514–4532.
- Kunttu, P., Juutilainen, K., Helo, T., Kulju, M., Kekki, T., Kotiranta, H., 2018. Updates to
- Finnish aphyllophoroid funga (Basidiomycota): new species and range extensions.
- 773 Mycosphere 9, 519–564.
- Kunttu, P., Kulju, M., Kotiranta, H., 2016. Athelia singularis and Leptosporomyces mundus
- (Basidiomycota) new to Finland. Mycobiota 6, 29–37.
- Kyaschenko, J., Clemmensen, K.E., Karltun, E., Lindahl, B.D., 2017. Below-ground organic
- matter accumulation along a boreal forest fertility gradient relates to guild interaction within
- 778 fungal communities. Ecol. Lett. 20, 1546–1555.
- Lanfear, R., Calcott, B., Ho, S.Y.W., Guindon, S., 2012. PartitionFinder: combined selection of
- partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol.
- 781 29, 1695–1701.
- Larsen, M.J., Zak, B., 1976. Byssoporia gen. nov.: taxonomy of the mycorrhizal fungus Poria
- 783 terrestris. Can. J. Bot. 58, 727–734.
- Larsson, E., Larsson, K., 2003. Phylogenetic relationships of russuloid basidiomycetes with
- emphasis on aphyllophoralean taxa. Mycologia 95, 1037–1065.
- Larsson, K.-H., 2007. Re-thinking the classification of corticioid fungi. Mycol. Res. 3, 1040–

787 1063. 788 Larsson, K.-H., Larsson, E., Kõljalg, U., 2004. High phylogenetic diversity among corticioid 789 homobasidiomycetes. Mycol. Res. 108, 983–1002. Li, Y., Steenwyk, J.L., Chang, Y., Wang, Y., James, T.Y., Stajich, J.E., Spatafora, J.W., 790 Groenewald, M., Dunn, C.W., Hittinger, C.T., Shen, X.-X., Rokas, A., 2020. A genome-791 scale phylogeny of Fungi; insights into early evolution, radiations, and the relationship 792 793 between taxonomy and phylogeny. bioRxiv 2020.08.23.262857. https://doi.org/10.1101/2020.08.23.262857 794 Liu, D., Goffinet, B., Ertz, D., Kesel, A. De, Wang, X., Hur, J.-S., Shi, H., Zhang, Y., Yang, M., 795 Wang, L., 2018. Circumscription and phylogeny of the Lepidostromatales (lichenized 796 Basidiomycota) following discovery of new species from China and Africa. Mycologia 109, 797 798 730-748. Liu, Y.J., Whelen, S., Hall, B.D., 1999. Phylogenetic relationships among ascomycetes: evidence 799 from an RNA Polymerse II subunit. Mol. Biol. Evol. 16, 1799-1808. 800 Maaroufi, N.I., Nordin, A., Palmqvist, K., Hasselquist, N.J., Forsmark, B., Rosenstock, N.P., 801 Wallander, H., Gundale, M.J., 2019. Anthropogenic nitrogen enrichment enhances soil 802 803 carbon accumulation by impacting saprotrophs rather than ectomycorrhizal fungal activity. 804 Glob. Chang. Biol. 1–15. Maekawa, N., Yokoi, H., Sotome, K., Matsuura, K., Tanaka, C., Endo, N., Nakagiri, A., 805 Ushijima, S., 2020. Athelia termitophila sp. nov. is the teleomorph of the termite ball fungus 806 Fibularhizoctonia sp. Mycoscience. https://doi.org/10.1016/j.myc.2020.08.002 807

808 Matheny, P.B., Wang, Z., Binder, M., Curtis, J.M., Lim, Y.W., Henrik Nilsson, R., Hughes, 809 K.W., Hofstetter, V., Ammirati, J.F., Schoch, C.L., Langer, E., Langer, G., McLaughlin, 810 D.J., Wilson, A.W., Frøsley, T., Ge, Z.W., Kerrigan, R.W., Slot, J.C., Yang, Z.L., Baroni, T.J., Fischer, M., Hosaka, K., Matsuura, K., Seidl, M.T., Vauras, J., Hibbett, D.S., 2007. 811 Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, 812 Fungi). Mol. Phylogenet. Evol. 43, 430–451. 813 814 Matsuura, K., Tanaka, C., Nishida, T., 2000. Symbiosis of a termite and a sclerotium-forming fungus: sclerotia mimic termite eggs. Ecol. Res. 15, 405–414. 815 Miettinen, O., Larsson, E., Sjökvist, E., Larsson, K.H., 2012. Comprehensive taxon sampling 816 reveals unaccounted diversity and morphological plasticity in a group of dimitic polypores 817 (Polyporales, Basidiomycota). Cladistics 28, 251–270. 818 819 Miettinen, O., Larsson, K.H., 2011. Sidera, a new genus in Hymenochaetales with poroid and hydnoid species. Mycol. Prog. 10, 131-141. 820 Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for 821 822 inference of large phylogenetic trees, in: Gateway Computing Environments Workshop (GCE). New Orleans, pp. 1–8. 823 824 Nagy, L.G., Riley, R., Tritt, A., Adam, C., Daum, C., Floudas, D., Sun, H., Yadav, J.S., 825 Pangilinan, J., Larsson, K.H., Matsuura, K., Barry, K., Labutti, K., Kuo, R., Ohm, R.A., Bhattacharya, S.S., Shirouzu, T., Yoshinaga, Y., Martin, F.M., Grigoriev, I. V., Hibbett, 826 D.S., 2015. Comparative genomics of early-diverging mushroom-forming fungi provides 827 insights into the origins of lignocellulose decay capabilities. Mol. Biol. Evol. 33, 959–970. 828 829 Nakasone, K.K., 2013. Taxonomy of *Epithele* (Polyporales, Basidiomycota). Sydowia 65, 59–

830 112. Nordén, B., Applequist, T., Lindahl, B.D., Henningsson, M., 1999. Cubic rot fungi - corticioid 831 fungi in highly brown rotted spruce stumps. Mycol. Helv. 10, 13–24. 832 Ogura-Tsujita, Y., Gebauer, G., Xu, H., Fukasawa, Y., Umata, H., Tetsuka, K., Kubota, M., 833 Schweiger, J.M.I., Yamashita, S., Maekawa, N., Maki, M., Isshiki, S., Yukawa, T., 2018. 834 The giant mycoheterotrophic orchid Erythrorchis altissima is associated mainly with a 835 divergent set of wood-decaying fungi. Mol. Ecol. 27, 1324–1337. 836 Okayama, M., Yamato, M., Yagame, T., Iwase, K., 2012. Mycorrhizal diversity and specificity 837 in Lecanorchis (Orchidaceae). Mycorrhiza 22, 545–553. 838 Ordynets, A., Savchenko, A., Akulov, A., Yurchenko, E., Malysheva, V.F., 2017. 839 Aphyllophoroid fungi in insular woodlands of eastern Ukraine. Biodivers. Data J. 5, 840 e22426. 841 Parmasto, E., 1968. Conspectus Systematis Corticiacearum. Institutum zoologicum et botanicum 842 Academiae scientiarum R.P.S.S. Estonicae, Tartu. 843 Peter, M., Ayer, F., Cudlín, P., Egli, S., 2008. Belowground ectomycorrhizal communities in 844 845 three Norway spruce stands with different degrees of decline in the Czech Republic. Mycorrhiza 18, 157–169. 846 847 Prasher, I.B., 2015. Wood-rotting non-gilled Agaricomycetes of Himalayas, Fungal Diversity Research Series. Springer Netherlands, Dordrech. 848 Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., 2018. Posterior 849 850 summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904.

851	Rehner, S., Buckley, E., 2005. A <i>Beauveria</i> phylogeny inferred from nuclear ITS and EF1- α
852	sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs.
853	Mycologia 97, 84–98.
854	Reid, D.A., 1965. A monograph of the stipitate stereoid fungi. Beihefte zur Nov. Hedwigia 18,
855	314.
856	Ronquist, F., Huelsenbeck, J., 2003. MrBayes: Bayesian phylogenetic inference under mixed
857	models. Bioinformatics2 19, 1572–1574.
858	Rosenthal, L.M., Larsson, KH., Branco, S., Chung, J.A., Glassman, I., Liao, H., Peay, K.G.,
859	Smith, D.P., Talbot, J.M., Taylor, J.W., Vellinga, E.C., Vilgalys, R., Bruns, T.D., 2017.
860	Survey of corticioid fungi in North American pinaceous forests reveals hyperdiversity,
861	underpopulated sequence databases, and species that are potentially ectomycorrhizal.
862	Mycologia 109, 115–127.
863	Sánchez-García, M., Matheny, P.B., 2017. Is the switch to an ectomycorrhizal state an
864	evolutionary key innovation in mushroom-forming fungi? A case study in the
865	Tricholomatineae (Agaricales). Evolution (N. Y). 71, 51–65.
866	https://doi.org/10.1111/evo.13099
867	Sanderson, M.J., McMahon, M.M., Steel, M., 2010. Phylogenomics with incomplete taxon
868	coverage: the limits to inference. BMC Evol. Biol. 10, 155.
869	Sato, H., Toju, H., 2019. Timing of evolutionary innovation: scenarios of evolutionary
870	diversification in a species ☐rich fungal clade, Boletales. New Phytol. 222, 1924–1935.
871	https://doi.org/10.1111/nph.15698

872	Singh, A.P., Dhingra, G.S., Jaspreet, K., 2010. Athelopsis parvispora (Basidiomycetes), a new
873	species from India. Mycotaxon 113, 327–329.
874	Sjökvist, E., Larsson, E., Eberhardt, U., Ryvarden, L., Larsson, KH., 2012. Stipitate stereoid
875	basidiocarps have evolved multiple times. Mycologia 104, 1046–1055.
876	Sjökvist, E., Pfeil, B.E., Larsson, E., Larsson, KH., 2014. Stereopsidales - a new order of
877	mushroom-forming fungi. PLoS One 9, e95227.
878	Smith, M.E., Schell, K.J., Castellano, M.A., Trappe, M.J., Trappe, J.M., 2013a. The enigmatic
879	truffle Fevansia aurantiaca is an ectomycorrhizal member of the Albatrellus lineage.
880	Mycorrhiza 23, 663–668.
881	Smith, M.E., Schell, K.J., Castellano, M.A., Trappe, M.J., Trappe, J.M., 2013b. The enigmatic
882	truffle Fevansia aurantiaca is an ectomycorrhizal member of the Albatrellus lineage.
883	Mycorrhiza 23, 663–668. https://doi.org/10.1007/s00572-013-0502-2
884	Song, J., Liu, X.Y., Wang, M., Cui, B.K., 2016. Phylogeny and taxonomy of the genus
885	Anomoloma (Amylocorticiales, Basidiomycota). Mycol. Prog. 15, 1–8.
886	Stalpers, J.A., 1993. The aphyllophoraceous fungi I. Keys to the species of the Thelephorales.
887	Stud. Mycol. 35, 1–168.
888	Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
889	large phylogenies. Bioinformatics 30, 1312–1313.
890	Stokland, J.N., Larsson, KH., 2011. Legacies from natural forest dynamics: different effects of
891	forest management on wood-inhabiting fungi in pine and spruce forests. For. Ecol. Manage
892	261, 1707–1721.

893 Stöver, B.C., Müller, K.F., 2010. TreeGraph 2: combining and visualizing evidence from 894 different phylogenetic analyses. BMC Bioinformatics 11, 7. Taylor, A.F.S., Alexander, L.J., 1991. Ectomycorrhizal synthesis with Tylospora fibrillosa, a 895 member of the Corticiaceae. Mycol. Res. 95, 381–384. 896 Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S., Wijesundera, R., Villarreal Ruiz, 897 L., Vasco-Palacios, A.M., Quang Thu, P., Suija, A., Smith, M.E., Sharp, C., Saluveer, E., 898 899 Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., Piepenbring, M., Phosri, C., Peterson, M., Parts, K., Pärtel, K., Otsing, E., Nouhra, E., Njouonkou, A.L., 900 901 Henrik Nilsson, R., Morgado, L.N., Mayor, J., May, T.W., Majuakim, L., Jean Lodge, D., See Lee, S., Larsson, K.-H., Kohout, P., Hosaka, K., Hiiesalu, I., Henkel, T.W., Harend, H., 902 Guo, L., Greslebin, A., Grelet, G., Geml, J., Gates, G., Dunstan, W., Dunk, C., Drenkhan, 903 R., Dearnaley, J., De Kesel, A., Dang, T., Chen, X., Buegger, F., Brearley, F.Q., Bonito, G., 904 905 Anslan, S., Abell, S., Abarenkov, K., Wardle, D.A., Lindahl, B.D., 2014. Global diversity and geography of soil fungi. Science (80-.). 346, 1256688. 906 Tedersoo, L., Jairus, T., Horton, B.M., Abarenkov, K., Suvi, T., Saar, I., 2008. Strong host 907 preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by 908 DNA barcoding and taxon-specific primers. New Phytol. 180, 479–490. 909 910 Tedersoo, L., May, T.W., Smith, M.E., 2010. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20, 217–263. 911 Tedersoo, L., Sánchez-Ramírez, S., Kõljalg, U., Bahram, M., Döring, M., Schigel, D., May, T., 912 Ryberg, M., Abarenkov, K., 2018. High-level classification of the Fungi and a tool for 913 evolutionary ecological analyses. Fungal Divers. 90, 135–159. 914

915 Tedersoo, L., Smith, M.E., 2013. Lineages of ectomycorrhizal fungi revisited: foraging strategies 916 and novel lineages revealed by sequences from belowground. Fungal Biol. Rev. 27, 83–99. 917 Varga, T., Krizsán, K., Földi, C., Dima, B., Sánchez-García, M., Sánchez-Ramírez, S., Szöllősi, G.J., Szarkándi, J.G., Papp, V., Albert, L., Andreopoulos, W., Angelini, C., Antonín, V., 918 919 Barry, K.W., Bougher, N.L., Buchanan, P., Buyck, B., Bense, V., Catcheside, P., Chovatia, M., Cooper, J., Dämon, W., Desjardin, D., Finy, P., Geml, J., Haridas, S., Hughes, K., Justo, 920 921 A., Karasiński, D., Kautmanova, I., Kiss, B., Kocsubé, S., Kotiranta, H., LaButti, K.M., Lechner, B.E., Liimatainen, K., Lipzen, A., Lukács, Z., Mihaltcheva, S., Morgado, L.N., 922 Niskanen, T., Noordeloos, M.E., Ohm, R.A., Ortiz-Santana, B., Ovrebo, C., Rácz, N., Riley, 923 R., Savchenko, A., Shiryaev, A., Soop, K., Spirin, V., Szebenyi, C., Tomšovský, M., 924 Tulloss, R.E., Uehling, J., Grigoriev, I. V., Vágvölgyi, C., Papp, T., Martin, F.M., 925 Miettinen, O., Hibbett, D.S., Nagy, L.G., 2019. Megaphylogeny resolves global patterns of 926 927 mushroom evolution. Nat. Ecol. Evol. 3, 668–678. https://doi.org/10.1038/s41559-019-0834-1 928 Veldre, V., Abarenkov, K., Bahram, M., Martos, F., Selosse, M.A., Tamm, H., Kõljalg, U., 929 Tedersoo, L., 2013. Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, 930 Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecol. 6, 256-931 268. https://doi.org/10.1016/j.funeco.2013.03.004 932 Wendland, J., Kothe, E., 1997. Isolation of tefl encoding translation elongation factor EF1α from 933 934 the homobasidiomycete *Schizophyllum commune*. Mycol. Res. 101, 798–802. Wenneker, M., Pham, K.T.K., Lemmers, M.E.C., de Boer, F.A., van Leeuwen, P.J., Hollinger, 935 T.C., van de Geijn, F.G., Thomma, B.P.H.J., 2017. Fibulorhizoctonia psychrophila is the 936

937 causal agent of lenticel spot on apple and pear fruit in the Netherlands. Eur. J. Plant Pathol. 148, 213–217. 938 Wijayawardene, N.N., Hyde, K.D., Al-ani, L.K.T., Tedersoo, L., Haelewaters, D., Rajeshkumar, 939 K.C., Zhao, R., Aptroot, A., Leontyev, D. V, Ramesh, K., Tokarev, Y.S., Dai, D., Letcher, 940 941 P.M., Steven, L., Ertz, D., Lumbsch, H.T., Kukwa, M., Issi, V., Madrid, H., Phillips, A.J.L., 942 Selbmann, L., Walter, P., Horváth, E., Bensch, K., Kirk, P., Raja, H.A., Radek, R., Papp, 943 V., Dima, B., Ma, J., Malosso, E., Takamatsu, S., Rambold, G., Gannibal, P.B., Triebel, D., Gautam, A.K., Avasthi, S., Suetrong, S., Timdal, E., Fryar, S.C., Delgado, G., Réblová, M., 944 Doilom, M., Dolatabadi, S., Humber, R.A., Kodsueb, R., Sánchez-, I., Goto, B.T., Silva, 945 D.K.A., Souza, F.A. De, Silva, G.A., Silva, I.R., Błaszkowski, J., Jobim, K., Maia, L.C., 946 Barbosa, F.R., Fiuza, P.O., Divakar, P.K., Shenoy, B.D., Castañeda-ruiz, R.F., Papizadeh, 947 M., Heredia, G., Bakhshi, M., Boehm, E., Youssef, N., Vincent, P., Lawrey, J.D., Santiago, 948 949 A.L.C.M.D.A., Jadson, D.P., Souza-motta, C.M., Firmino, A.L., Tian, Q., Monteiro, J.S., Grossart, H., Suija, A., Etayo, J., Tsurykau, A., Kuhnert, E., Mungai, P., Damm, U., Li, Q., 950 Zhang, H., Boonmee, S., Lu, Y., Becerra, A.G., Brearley, F.Q., Motiejūnaitė, J., Khare, R., 951 Gaikwad, S., Siril, D.A., Tang, L., He, M., Flakus, A., Zhurbenko, M.P., Mckenzie, E.H.C., 952 Bhat, D.J., Kui-liu, J., Raza, M., Nassonova, E.S., Prieto, M., Jayalal, R.G.U., Yurkov, A., 953 Schnittler, M., Shchepin, O.N., Yuri, K., Liu, P., Cavender, J.C., Kang, Y., Zhang, L., Xu, 954 R., Li, Y., Monika, C., Ekanayaka, A.H., Wen, T., Lateef, A.A., Pereira, O.L., Navathe, S., 955 Hawksworth, D.L., Fan, X., Dissanayake, L.S., 2020. Outline of Fungi and fungi-like taxa. 956 Mycosphere 11, 1–367. 957 Yashiro, T., Matsuura, K., Tanaka, C., 2011. Genetic diversity of termite-egg mimicking fungi 958 "termite balls" within the nests of termites. Insectes Soc. 58, 57–64. 959

960	Yurchenko, E., Olubkov, V., 2003. The morphology, biology, and geography of a necrotrophic
961	basidiomycete Athelia arachnoidea in Belarus. Mycol. Prog. 2, 275–284.
962	Zhao, R.L., Li, G.J., Sánchez-Ramírez, S., Stata, M., Yang, Z.L., Wu, G., Dai, Y.C., He, S.H.,
963	Cui, B.K., Zhou, J.L., Wu, F., He, M.Q., Moncalvo, J.M., Hyde, K.D., 2017. A six-gene
964	phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times
965	of higher taxa and a phyloproteomics perspective. Fungal Divers. 84, 43–74.
966	Zhou, J.L., Chen, H., Cui, B.K., 2016. Podoserpula ailaoshanensis sp. nov. (Amylocorticiales,
967	Basidiomycota) from China based on morphological and sequence analyses. Mycoscience
968	57, 295–301.
969	Zhou, L.W., Dai, Y.C., 2013. Taxonomy and phylogeny of wood-inhabiting hydnoid species in
970	Russulales: two new genera, three new species and two new combinations. Mycologia 105,
971	636–649.

972 Figure 1. Comparison of relationships among orders within Agaricomycetidae according to: A) Nagy et al. (2015), B) Chen et al. (2019), Liu et al. (2018), and Zhao et al. (2017), C) Varga et al. 973 (2019).974 Figure 2. Atheliales. A. Athelia epiphylla; section through basidioma and basidiospores. B. 975 976 Byssocorticium atrovirens; section through basidioma and basidiospores. C. Lobulicium 977 occultum; basidiospores. D. Tylospora fibrillosa; section through basidioma and basidiospores. 978 E. Piloderma fallax; basidioma. Scale bar for sections = $20 \mu m$ and for basidiospores = $5 \mu m$. Scale bar for photo = 1 cm. Drawings J. Eriksson. Photo K-H Larsson. Drawings reproduced 979 with permission from Fungiflora A/S, Oslo. 980 Figure 3. Phylogenetic relationships of Agaricomycetes based on LSU, 5.8S rpb2, and tef1 981 excluding the third codon position. Topology and branch lengths originated from RAxML 982 983 analyses. Color shading indicates different orders. Thickened branches are strongly supported with BS\ge 75 and PP\ge 0.95. Branches supported by only either BS or PP have their support values 984 noted above the branches as (BS/PP). Thickened species name denotes the type species of genera 985 within Atheliales sensu lato, an asterisk (*) indicates that the corresponding taxon used to belong 986 to Atheliales sensu lato, double asterisk (**) indicates that the taxon used to be placed outside of 987 Atheliales. Arrow points to the clade corresponding to subclass Agaricomycetidae. 988 989 **Figure 4.** Phylogenetic relationships of *Atheliales sensu stricto* based on LSU, 5.8S, ITS1, ITS2, rpb2, and tef1 including the third codon position, with Lepidostromatales and Boletales as 990 991 outgroups. Topology and branch lengths originated from RaxML analyses. Within Atheliales, colored shading indicates different families, while non-shaded groups are incertae sedis. 992 Thickened branches are strongly supported with BS≥75 and PP≥0.95. Branches well-supported 993 by only either BS or PP have their support values noted above the branches as (BS/PP). 994

Thickened species name denotes the type species of genera within Atheliales, while an asterisk
(*) indicates the type genus of the family. Symbols before the names indicate the nutritional
mode: empty circle (○) for saprotrophic, filled circle (●) for ectomycorrhizal, and diamond (◊)
for lichenicolous.

Table 1. Overview of *Atheliales*-associated taxa. Plus (+) indicates that the taxon belongs to *Atheliales*, minus (-) that it does not, and both (+/-) suggests non-monophyly because members exist both inside and outside *Atheliales*. Question mark (?) indicates uncertain placement, while asterisk (*) marks that the name is treated as a synonym. Empty cell means that it was not treated in the study. Numbered columns indicate the source: [1]=(Jülich, 1982), [2]=(Larsson et al., 2004), [3]=(Larsson, 2007), [4]=(Kirk et al., 2008), [5]=(Ertz et al., 2008), [6]=(Hjortstam and Ryvarden, 2010), [7]=(Binder et al., 2010), [8]=(Kotiranta et al., 2011), [9]=(Sjökvist et al., 2012), [10]=(Hodkinson et al., 2014), [11]=(Liu et al., 2018), [12]=(He et al., 2019), [13]=(Index Fungorum, 2020), [14]=*MycoBank* (accessed: February 2020). [1] and [6] were based on morphology, whereas [3], [4], [12], [13], and [14] summarize previous studies. Remaining sources were based on molecular data.

Taxon	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Amphinema	-	+	+	+			+	+		+	+	+	+	+
Athelia	+	+	+	+	+		+/-	+	+	+	+	+	+	+
Athelicium			-	+								+	-	-
Athelocystis						+						+	+	+
Athelopsis	+	+	+	+	+		+/-		+	+	+	+	+	+
Butlerelfia				+								+	+	+
Byssocorticium	+	+	+	+	+			+		+	+	+	+	+
Byssoporia	+		-	+						-		-	+	+
Caerulicium	+		+?	+*								+*	+*	+*
Digitatispora				+								-	+	+
Elaphocephala			?	+?								+	+	+

Fibulomyces	+		+/-	+			+		+		+*	+	+
Hypochnella	-		?	+?							+	+	+
Hypochniciellum		-	-	+		-					+	+	+
Hypochnopsis	+		-	-								-	-
Leptosporomyces	+		+	+	+	+/-	+		+	+	+	+	+
Lobulicium			+	+							+	+	+
Luellia	+		-	-							-	-	-
Lyoathelia			+?								+	+	?
Melzericium			?	+							+	+	+
Mycostigma				+?							+	+	+
Piloderma	+	+	+	+	+		+	+	+	+	+	+	+
Pteridomyces			+?	+							+	+	+
Tretomyces							+				+	+	+
Tylospora	+	+	+	+	+				+	+	+	+	+
Stereopsis								+				-	-
vitellina													

Table 2. Species names, voucher information, GenBank accession numbers and references of taxa included in this study. Taxon in bold denotes type species of genera listed in *Atheliales sensu lato*. Taxon followed by an asterisk (*) indicates that it was placed in *Atheliales sensu lato* but placed elsewhere according to this study, double asterisks (**) indicates the opposite.

		Country of		GenBank acc			
Order/Species	ID	origin (ISO code)	ITS	LSU	rpb2	tef1	Source
Agaricales			.(21			
Anthracophyllum archeri	AFTOL-973		DQ404387	AY745709	DQ385877	DQ028586	Matheny et al., unpublished
Aphanobasidium pseudotsugae	HHB-822	US	GU187509	GU187567	GU187781	GU187695	(Binder et al., 2010)
		.(10.				(Hibbett and Binder, 2002; Matheny
Chondrostereum purpureum	AFTOL-441	US	DQ200929	AF518607	AY218477.2	DQ457632	et al., 2007, 2006; Wang et al.,
							2004)
Digitatispora marina *	3027C	NO	KM272371	KM272362			(Rämä et al., 2014)
Gymnopilus picreus	ZRL2015011	CN	LT716066	KY418882	KY419027	KY419077	(Zhao et al., 2017)
77 . 1.1	AFTOL 460		AX/571042	A F2070 C A	A3/210512.2	A \$7002.42.4	(Bodensteiner et al., 2004; Hibbett
Henningsomyces candidus	AFTOL-468		AY571043	AF287864	AY218513.2	AY883424	et al., 2000; Wang et al., 2004)
Lepiota cristata	ZRL20151133	CN	LT716026	KY418841	KY418992	KY419048	(Zhao et al., 2017)
Lepista irina	AFTOL-815	US	DQ221109	DQ234538	DQ385885.2	DQ028591	(Matheny et al., 2007)

Mythicomyces corneipes	AFTOL-972		DQ404393	AY745707	DQ408110	DQ029197	Matheny et al., unpublished
Amylocorticiales							
Amylocorticiellum molle	KHL 13500	SE		GU187667			(Binder et al., 2010)
Amylocorticiellum subillaqueatum	KHL 8493		AY463431	AY586679			(Larsson et al., 2004)
Amylocorticium cebennense	HHB-2808	US	GU187505	GU187561	GU187770	GU187675	(Binder et al., 2010)
Amylocorticium subsulphureum	HHB-13817	US	GU187506	GU187562	GU187773	GU187680	(Binder et al., 2010)
Leptosporomyces septentrionalis * 1	GB-0090937	SE	LR694203	LR694181	LR694276	LR694219	This study
Leptosporomyces septentrionalis * 2	JS 16122	NO	GU187497	GU187664			(Binder et al., 2010)
Plicaturopsis crispa	MR00464		LR694209	LR694187	LR694281	LR694225	This study
Atheliales							
Amphinema byssoides 1	EL 11/98	EE	AY463375	AY586626			(Larsson et al., 2004)
Amphinema byssoides 2	M. Ryberg	SE	GQ162810	GQ162810			(Kotiranta et al., 2011)
Amphinema byssoides 3	MR00333	10	LR694190	LR694167			This study
Amphinema diadema	JS 25999	NO	GQ162811	GQ162811			(Kotiranta et al., 2011)
Amphinema sp.	BS1710028	SE	LR694191	LR694168	LR694266	LR694212	This study
Athelia acrospora	E. Bendiksen 645/07		MT305993	MT305993	*	*	This study
Athelia arachnoidea l	CBS 418.72	NL	GU187504	GU187557	GU187769	GU187672	(Binder et al., 2010)
Athelia arachnoidea 2	GB0087426	SE	LR694192	LR694169	LR694267	LR694213	This study
Athelia bombacina I	E. Bendiksen 523/07		MT305994	MT305994	*		This study
Athelia bombacina 2	E. Bendiksen 580/07		MT305995	MT305995	*		This study

Athelia decipiens 1	GB0090493	SE	LR694193	LR694170	LR694268		This study
Athelia decipiens 2	JS 4930	NO	AY463381	AY586632			(Larsson et al., 2004)
Athelia decipiens 3	L-10567	US	GU187537	GU187592	GU187802	GU187739	(Binder et al., 2010)
Athelia epiphylla 1	GB0090655	SE	LR694194	LR694171			This study
Athelia epiphylla 2	KHL 13899		MT305996	MT305996	*		This study
Athelia fibulata	E. Bendiksen 573 07		MT305997	MT305997	*	*	This study
Athelia neuhoffii	GB0087199	SE	LR694195	LR694172	LR694269		This study
Athelia singularis	JS 25630	NO	GQ162813	GQ162813			(Kotiranta et al., 2011)
Athelia sp. 1	BHI-F636	US	MK958813	MK958817	MK983172	MK983174	This study
Athelia sp. 2	BHI-F645	US	MK958814	MK958818	MK983173	MK983175	This study
Athelia sp. 3	HHB-15599	US	GU187502	GU187565	GU187767	GU187678	(Binder et al., 2010)
Athelopsis glaucina 1	GB0058723	SE	LR694196	LR694173			This study
Athelopsis glaucina 2	KHL 11901	SE	GU187495	GU187662			(Binder et al., 2010)
Athelopsis subinconspicua	GB0058732	SE	LR694197	LR694174	LR694270	LR738852	This study
Byssocorticium atrovirens 1	BS1710033	SE	LR694198	LR694175	LR694271	LR694214	This study
Byssocorticium atrovirens 2	GB0078129	SE	LR694199	LR694176	LR694272	LR694215	This study
Byssocorticium caeruleum	RS 09400	FI	GQ162814	GQ162814			(Kotiranta et al., 2011)
Byssocorticium pulchrum I	GB0078135	SE	LR694200	LR694177	LR694273	LR694216	This study
Byssocorticium pulchrum 2	KHL 11710	FI	AY463388	AY586639			(Larsson et al., 2004)
Fibulomyces mutabilis	HG-B 5753	DE	GQ162817	GQ162817			(Kotiranta et al., 2011)

	GD 04 0 = 24 4		T D 40 4000	T T 40 11 00	T 70 40 40 5	T D 40 404 0	mi.
Leptosporomyces galzinii	GB0107211	SE	LR694202	LR694180	LR694275	LR694218	This study
Leptosporomyces raunkiaerii	HHB-7628	US	GU187528	GU187588		GU187719	(Binder et al., 2010)
Leptosporomyces sp.	GB0087510	SE	LR694204	LR694182	LR694277	LR694220	This study
Lobulicium occultum	KHL 13496b		*	*			This study
Piloderma bicolor	BS1710030	SE	LR694205	LR694183	LR694278	LR694221	This study
Piloderma byssinum 1	GB0121002	SE	LR694206	LR694184	LR694279		This study
Piloderma byssinum 2	JS 20399	NO	DQ469281	DQ469281			Larsson, unpublished
Piloderma byssinum 3	KHL 8456	SE	AY463453	AY586699			(Larsson et al., 2004)
Piloderma croceum	MR00338		LR694207	LR694185	LR738853	LR694223	This study
Piloderma fallax	S-12		GU187535	GU187591	GU187797	GU187738	(Binder et al., 2010)
Piloderma lanatum 1	JS 22149	NO	DQ469288	DQ469288			Larsson, unpublished
Piloderma lanatum 2	JS 24861	NO	AY463454	AY586700			(Larsson et al., 2004)
Piloderma olivaceum	BS1710031	SE	LR694208	LR694186	LR694280	LR694224	This study
Stereopsis vitellina ** I	F703241	SE	LR694211	LR694189	LR694283		This study
Stereopsis vitellina ** 2	Gilsenius	SE	JN649374	JN649374			(Sjökvist et al., 2012)
Tretomyces lutescens	GB0052596	NO	GQ162820	GQ162820			(Kotiranta et al., 2011)
Tretomyces microsporus	GB0090789	FI		GQ162821			(Kotiranta et al., 2011)
Tylospora asterophora	KHL 8566	SE		AY463480			(Larsson et al., 2004)
uriculariales							
Auricularia sp.	AFTOL-676	US	DQ200918	AY634277	DQ366278	DQ408143	(Matheny et al., 2007)

Boletales							
Coniophora arida	FP-104367	US	GU187510	GU187573	GU187775	GU187684	(Binder et al., 2010)
Coniophora marmorata	MUCL 31667	BE	GU187515	GU187571	GU187780	GU187688	(Binder et al., 2010)
Gomphidius roseus	AFTOL-1780	DE	DQ534570	DQ534669	GU187818	GU187702	(Binder et al., 2010)
Gyrodontium sacchari	MUCL 40589	GF	GU187522	GU187579	GU187764	GU187703	(Binder et al., 2010; Binder and Hibbett, 2006)
Hydnomerulius pinastri	MD312	US	GU187523	GU187580	GU187787	GU187708	(Binder et al., 2010)
Leucogyrophana lichenicola	DAOM 194172	CA	GU187531	GU187583	GU187789	GU187715	(Binder et al., 2010)
Leucogyrophana olivascens	HHB-11134	US	GU187532	GU187587	GU187790	GU187717	(Binder et al., 2010)
Pseudomerulius aureus	FP-103859	US	GU187534	GU187590	GU187799	GU187731	(Binder et al., 2010)
Psudomerulius curtisii	REH8912	AU	GU187533	GU187589	GU187796	GU187725	(Binder et al., 2010)
Cantharellales							
Clavulina sp.	AFTOL-667	70%	DQ202266	AY745694	DQ366286	DQ028589	(Matheny et al., 2007)
Hydnum albomagnum	AFTOL-471	US	DQ218305	AY700199	DQ234553	DQ234568	(Matheny et al., 2007)
Sistotrema confluens	AFTOL-613		DQ267125	AY647214	DQ381837		Nilsson et al., unpublished
Corticiales							
Punctularia strigosozonata	AFTOL-1248		DQ398958	AF518642	DQ381843	DQ408147	Matheny et al., unpublished; (Hibbett and Binder, 2002)
Vuillemenia comedens	AFTOL-1247		DQ398959	AF518666	DQ381844		Matheny et al., unpublished; (Hibbett and Binder, 2002)

Dacrymycetes							
Calocera cornea	AFTOL-438		AY789083	AY701526	AY536286	AY881019	Matheny et al., unpublished
Gloeophyllales							
Gloeophyllum striatum	ARIZ AN027866		HM536092	HM536063	HM640259	HM536111	(Garcia-Sandoval et al., 2011)
Gloeophyllum trabeum	1320	US	HM536094	HM536067	HM536112	HM536113	(Garcia-Sandoval et al., 2011)
Heliocybe sulcata	IBUG 9930	MX	HM536095	HM536069	HM536114	HM536115	(Garcia-Sandoval et al., 2011)
Neolentinus adhaerens	DAOM 214911		HM536096	HM536071	HM536116	HM536117	(Garcia-Sandoval et al., 2011)
Gomphales				<u> </u>			
Gautieria otthii	AFTOL-466	US	AF377072	AF393058	AY218486	AY883434	(Bidartondo and Bruns, 2002; Wang
Gauneria olimi	AFTOL-400	O3	AF3//0/2	AF393038	A1210400	711003434	et al., 2004)
Hymenochaetales			(0)				
							Matheny and Hibbett, unpublished;
Coltricia perennis	AFTOL-447		DQ234559	AF287854	AY218526	AY885147	(Hibbett et al., 2000; Wang et al.,
							2004)
Cotylidia sp.	AFTOL-700		AY854079	AY629317	AY883422	AY885148	Wang et al., unpublished; Matheny
Согунава ѕр.	AFTOL-700		A1634079	A1029317	A1 883422	A1003140	and Hibbett, unpublished
FomitIporia gabonensis	MUCL 47576	GA	GU461971	GU461990	JQ087972	GU461923	(Amalfi et al., 2012, 2010)
Fomitiporia mediterranea	AFTOL-488		AY854080	AY684157	AY803748	AY885149	Binder et al., unpublished
FomitopIria sonorae	MUCL 47689	US	JQ087893	JQ087920	JQ088006	JQ087947	(Amalfi et al., 2012)
Lyoathelia laxa *	V. Spirin 8810a		MT305998	MT305998			This study

Resicinium bicolor	AFTOL-810		DQ218310	AF393061	DQ457635	DQ061277	(Binder and Hibbett, 2002; Matheny
Residual decidi	711 102 010		DQ210310	711 373001	DQ-137033	DQ001277	et al., 2007)
Rickenella fibula	AFTOL-486		DQ241782	AY700195	DQ408115	DQ435794	Matheny et al., unpublished;
Jaapiales							
Jaapia argillacea	CBS 252.74	NL	GU187524	GU187581	GU187788	GU187711	(Binder et al., 2010)
Lepidostromatales					Ŏ,		
Lepidostroma vilgalysii	RV-MX16	MX	JN698907	JN698908			(Hodkinson et al., 2012)
Sulzbacheromyces caatingae	Sulzbacher 1479	BR	KC170320	KC170318			(Sulzbacher et al., 2012)
Phallales				3			
Phallus hadriani	AFTOL-683		DQ404385	AY885165	DQ408114	DQ435792	Matheny et al., unpublished
Polyporales			3				
Formitopsis pinicola	AFTOL-770		AY854083	AY684164	AY786056	AY885152	Wang et al., unpublished
C 1	APTOL 771	70,	D0204005	AV(0.41.62	DO400116	D0050040	Wang et al., unpublished; (Matheny
Ganoderma tsugae	AFTOL-771		DQ206985	AY684163	DQ408116	DQ059048	et al., 2007)
Grifola frondosa	AFTOL-701		AY854084	AY629318	AY786057	AY885153	Matheny and Hibbett, unpublished
Hypochnella violacea *	GB0090070	SE	LR694201	LR694179	LR694274	LR694217	This study
2111							Matheny and Hibbett, unpublished;
Phlebia radiata	AFTOL-484		AY854087	AF287885	AY218502	AY885156	(Hibbett et al., 2000)
n d	WEW57		A 3/21041	A F20707.5	A3/210400		(Hibbett et al., 2000; Wang et al.,
Postia rennyi	KEW57		AY218416	AF287876	AY218499		2004)

Sparassis crispa	AFTOL-703	CN	DQ250597	AY629321	DQ408122	DQ056289	(Matheny et al., 2007); Matheny an
<i>Бригизы</i> з с <i>н</i> зри	Al IOL-703	CN	DQ230371	A102)321	DQ400122	DQ030287	Hibbett, unpublished
Steccherinum tenue	KHL 12316	US	JN710598	JN710598	JN710739	JN710733	(Miettinen et al., 2012)
Trametes vesicolor	ZRL20151477		LT716079	KY418903	KY419041	KY419091	(Zhao et al., 2017)
Russulales					Ç		
Bondarzewia montana	AFTOL-452		DQ200923	DQ234539	AY218474.2	DQ059044	(Matheny et al., 2007; Wang et al.,
Бониа геми топини	Al 10L-432		DQ200723	DQ234337	A1210474.2	DQ037044	2004)
Byssoporia terrestris * 1	GB0058650	SE		LR694178			This study
Byssoporia terrestris * 2	Hjm 18172	SE	EU118608	EU118608			(Larsson, 2007)
Echinodontium tinctorium	AFTOL-455		AY854088	AF393056	AY218482.2	AY885157	Matheny and Hibbett, unpublished
Heterobasidion annosum	AFTOL-470		DQ206988	AF287866	AH013701.2	DQ028583	(Hibbett et al., 2000; Matheny et a
Heteroousidion annosum	Al 10L-470		DQ200788	Al 207000	A11013701.2	DQ028383	2007); Matheny et al. unpublished
Lactarius deceptivus	AFTOL-682	US	AY854089	AY631899	AY803749	AY885158	Matheny and Hibbett, unpublished
Lactarius lignyotus	AFTOL-681	US	TS DQ221107	AY631898	DQ408128	DQ435787	(Matheny et al., 2007); Matheny as
Laciarius tignyotus	Al TOL-081	O.S	DQ221107	A1031070	DQ408128	DQ433787	Hibbett, unpublished
Sebacinales							
Diviformospora indica	AFTOL-612		DO411527	AY293202	DO408131	AJ249911	Nilsson et al., unpublished; (Binde
Piriformospora indica	AFTOL-012		DQ411527	A I 293202	DQ408131	AJ249911	et al., 2005; Bütehorn et al., 2000)
Tremellodendron pallidum	AFTOL-699		DQ411526	AY745701	DQ408132	DQ029196	Matheny and Hibbett, unpublished
Stereopsidales							

Clavulicium macounii	KHL 15566	SE	KC203500	KC203500	KC203506	KC203520	(Sjökvist et al., 2014)
Stereopsis globosa	KHL 12592	CR	KC203495	KC203495	KC203501	KC203515	(Sjökvist et al., 2014)
Stereopsis radicans	LR45395	BZ	KC203496	KC203496	KC203502	KC203516	(Sjökvist et al., 2014)
Thelephorales							
Boletopsis leucomelanea	AFTOL-1527	US	DQ484064	DQ154112	GU187820	GU187763	(Binder et al., 2010; Matheny et al.,
							2006)
Hydnellum geogenium	AFTOL-680	US	DQ218304	AY631900	DQ408133	DQ059053	(Matheny et al., 2007)
Trechisporales				~ K			
Pteridomyces galzinii *	GB0150230	ES	LR694210	LR694188	LR694282	LR694226	This study
Trechispora alnicola	AFTOL-665	US	DQ411529	AY635768	DQ408135	DQ059052	Matheny and Hibbett, unpublished
Trechispora sp.	AFTOL-678	US	DQ411534	AY647217	DQ408136	DQ059051	Matheny and Hibbett, unpublished

Table 3. Summary of PCR primers used in this study. Asterisk (*) indicates a slight modification from the original primer.

Primer	Target	Dir.	Sequence (5'-3')	Reference	Function
name	region				
5.8SR	ITS	F	TCGATGAAGAACGCAGCG	(Vilgalys and Hester, 1990)	Sequencing
ITS1	ITS	F	TCCGTAGGTGAACCTGCGG	(White et al., 1990)	Sequencing
ITS1F	ITS	F	CTTGGTCATTTAGAGGAAGTAA	(Gardes and Bruns, 1993)	PCR and sequencing
ITS2	ITS	R	GCTGCGTTCTTCATCGATGC	(White et al., 1990)	Sequencing
ITS3	ITS	F	GCATCGATGAAGAACGCAGC	(White et al., 1990)	Sequencing
ITS4	ITS	R	TCCTCCGCTTATTGATATGC	(White et al., 1990)	PCR and sequencing
ITS4B1	ITS	R	CAAGRGACTTRTACACGGTCCA	(Tedersoo et al., 2007)	PCR
LR21	ITS/LSU	R	ACTTCAAGCGTTTCCCTTT	(Hopple and Vilgalys, 1999)	PCR and sequencing
LB-W-R	LSU	F	CCGTGAGGGAAAGATGAAAAG	(Tedersoo et al., 2008)*	Sequencing
LR0R	LSU	F	ACCCGCTGAACTTAAGC	(Hopple and Vilgalys, 1999)	PCR and sequencing
LR3	LSU	R	CCGTGTTTCAAGACGGG	(Hopple and Vilgalys, 1999)	Sequencing

LR3R	LSU	F	GTCTTGAAACACGGACC	(Hopple and Vilgalys, 1999)	Sequencing
LR5	LSU	R	TCCTGAGGGAAACTTCG	(Hopple and Vilgalys, 1999)	PCR and sequencing
LR7	LSU	R	TACTACCACCAAGATCT	(Hopple and Vilgalys, 1999)	PCR and sequencing
bRPB2-6F	RPB2	F	TGGGGYATGGTNTGYCCYGC	(Matheny, 2005)	PCR and sequencing
bRPB2-6R2	RPB2	R	GGRCANACCATNCCCCARTG	(Matheny et al., 2007)	PCR and sequencing
bRPB2-7R	RPB2	R	GAYTGRTTRTGRTCRGGGAAVGG	(Matheny, 2005)	PCR and sequencing
bRPB2-7.1R	RPB2	R	CCCATRGCYTGYTTMCCCATDGC	(Matheny, 2005)	PCR and sequencing
fRPB2-5F	RPB2	F	GAYGAYMGWGATCAYTTYGG	(Matheny, 2005)	PCR and sequencing
1567R	TEF1	R	ACHGTRCCRATACCACCRATCTT	(Rehner and Buckley, 2005)	PCR and sequencing
1577Fa	TEF1	F	CARGAYGTBTAYAAGATYGGTGG	(Rehner and Buckley, 2005)*	PCR and sequencing
2218R	TEF1	R	ATGACACCRACRGCRACRGTYTG	(Rehner and Buckley, 2005)	PCR and sequencing
983F	TEF1	F	GCYCCYGGHCAYCGTGAYTTYAT	(Rehner and Buckley, 2005)	PCR and sequencing

Table 4. Partition scheme and substitution models of *Agaricomycetes* dataset and *Atheliales sensu stricto* dataset for RAxML and MrBayes analyses based on PF2.

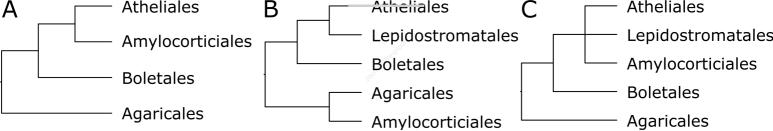
Agaricomycetes dataset

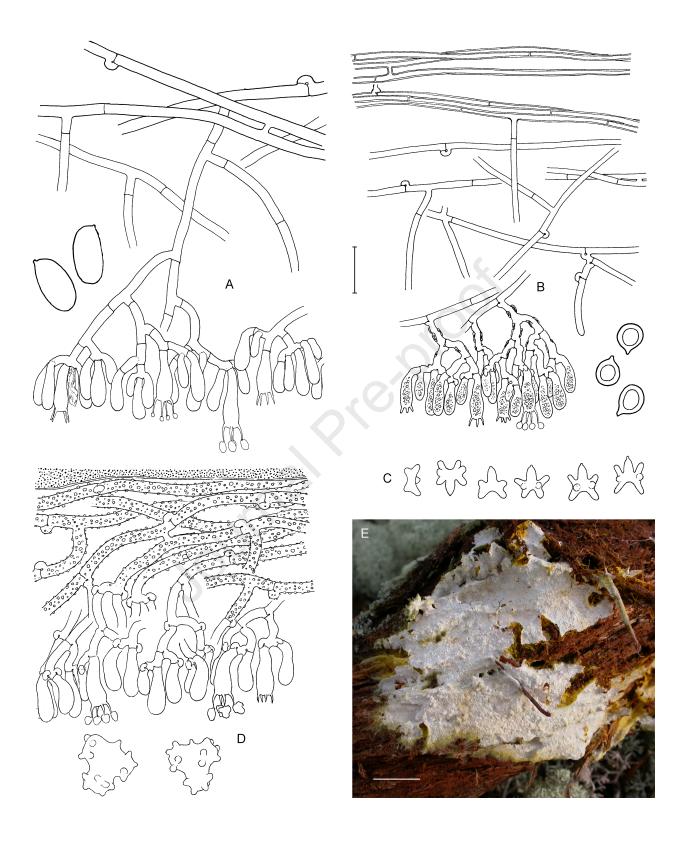
	ML		
		no. of	
Subset	Regions	sites	Best Model
1	5.8S, LSU	1164	GTR+I+G
2	rpb2 1 st codon	726	GTR+I+G
3	rpb2 2 nd codon, tef1 2 nd codon	1045	GTR+I+G
4	tef1 1st codon	319	GTR+I+G
	MB		
		no. of	
Subset	Regions	sites	Best Model
1	LSU	997	GTR+I+G
2	5.8S	167	K80+G
3	rpb2 1 st codon	726	GTR+I+G
4	rpb2 2 nd codon, tef1 2 nd codon	1045	GTR+I+G
5	tef1 1st codon	319	GTR+I+G

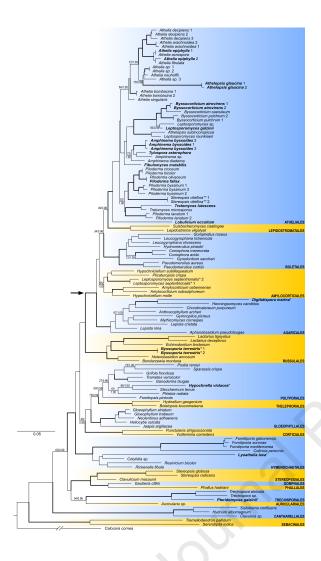
Atheliales sensu stricto dataset

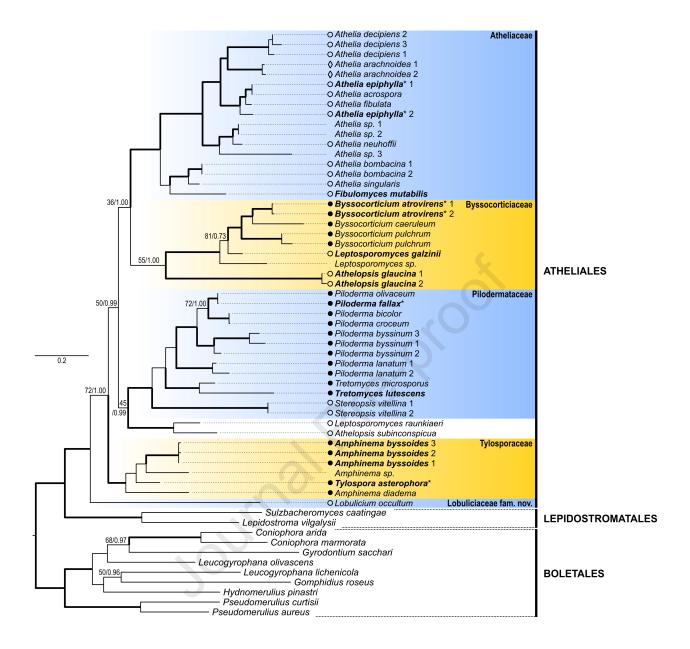
		ML		
			no.	of
Subset	Regions		sites	Best Model

	MD		
6	tef1 3 rd codon	308	GTR+G
5	tefl 1 st codon	308	GTR+I+G
4	rpb2 3 rd codon	348	GTR+I+G
3	ITS1, ITS2	660	GTR+I+G
2	5.8S, rpb2 2 nd codon, tef1 2 nd codon	818	GTR+I+G
1	rpb2 1 st codon, LSU	1271	GTR+I+G


MB


		no. of	40
Subset	Regions	sites	Best Model
1	rpb2 1 st codon, LSU	1271	GTR+I+G
2	5.8S	162	K80+G
3	ITS1, ITS2	660	GTR+I+G
4	tef1 2 nd codon, rpb2 2 nd codon	656	GTR+I+G
5	rpb2 3 rd codon	348	GTR+I+G
6	tef1 1 st codon	308	HKY+I+G
7	tef1 3 rd codon	308	GTR+G


Table 5. Summary of various statistics for the alignment of LSU, 5.8S, *rpb2*, *tef1*, ITS1, ITS2, as well as the final concatenated alignment.


	LSU	58S	rpb2	tef1	ITS1	ITS2	concatenated
Agaricomycetes dataset				Ç			
sequence lengths before excluding			387-	465-			
characters	-	-	2231	1126	-	-	-
sequence lengths in final alignment	526-		224-				
	916	84-162	1420	266-638	-	-	685-3046
final alignment length	997	167	1452	638	-	-	3254
number of sequences	123	116	93	84	-	-	123
mean coverage in final alignment	97.97%	97.83%	51.06%	61.85%	-	-	80.22%
pairwise identity in final alignment	87.30%	95.00%	87.10%	63.50%	-	-	74.10%
variable sites in final alignment	65.60%	56.90%	59.40%	36.50%	-	-	87.30%
Atheliales sensu stricto dataset							
sequence length before excluding characters	-	-	395-	467-	-	-	-

			1118	1093			
sequence length in final alignment	530-	84-160	346-	396-924	168-	180-	689-3481
	899		1044		267	285	
final alignment length	923	162	1044	924	311	349	3713
number of sequences	59	56	34	31	44	46	59
mean coverage in final alignment	96.72%	91.81%	46.66%	47.35%	74.37%	77.53%	71.85%
pairwise identity in final alignment	91.10%	97.20%	78.10%	86.40%	54.00%	56.60%	74.50%
variable sites in final alignment	44.30%	32.70%	52.60%	37.70%	91.60%	94.80%	84.30%

- Sequences from nrLSU, nrITS, rpb2 and tef1 regions were generated across Atheliales s.l.
- Taxon sampling focused on the type species of genera within *Atheliales s.l.*
- Maximum Likelihood and Bayesian analyses were conducted on two datasets to delimit the order and identify lineages therein.
- Five families are recognized in *Atheliales*, of which one is newly described.
- Some genera of *Atheliales s.l.* is placed in other orders.